Privacy-Preserving Biometric Identification Using Secure Multiparty Computation

被引:95
|
作者
Bringer, Julien
Chabanne, Herve
Patey, Alain
机构
[1] Morpho (SAFRAN Group)
[2] Télécom ParisTech, Paris
关键词
Privacy-preserving techniques - Anthropometry;
D O I
10.1109/MSP.2012.2230218
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a tutorial overview of the application of techniques of secure two-party computation (also known as secure function evaluation) to biometric identification. These techniques enable to compute biometric identification algorithms while maintaining the privacy of the biometric data. This overview considers the main tools of secure two-party computations such as homomorphic encryption, garbled circuits (GCs), and oblivious transfers (OTs) and intends to give clues on the best practices to secure a biometric identification protocol. It also presents recent trends in privacy-preserving biometric identification that aim at making it usable in real-life applications. © 1991-2012 IEEE.
引用
收藏
页码:42 / 52
页数:11
相关论文
共 50 条
  • [1] Privacy-Preserving Feature Selection with Secure Multiparty Computation
    Li, Xiling
    Dowsley, Rafael
    De Cock, Martine
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [2] Secure multiparty computation for privacy-preserving drug discovery
    Ma, Rong
    Li, Yi
    Li, Chenxing
    Wan, Fangping
    Hu, Hailin
    Xu, Wei
    Zeng, Jianyang
    BIOINFORMATICS, 2020, 36 (09) : 2872 - 2880
  • [3] Privacy-preserving record linkage in large databases using secure multiparty computation
    Peeter Laud
    Alisa Pankova
    BMC Medical Genomics, 11
  • [4] Privacy-preserving record linkage in large databases using secure multiparty computation
    Laud, Peeter
    Pankova, Alisa
    BMC MEDICAL GENOMICS, 2018, 11
  • [5] Fast Privacy-Preserving Text Classification Based on Secure Multiparty Computation
    Resende, Amanda
    Railsback, Davis
    Dowsley, Rafael
    Nascimento, Anderson C. A.
    Aranha, Diego E.
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 428 - 442
  • [6] MPloC: Privacy-Preserving IP Verification using Logic Locking and Secure Multiparty Computation
    Mouris, Dimitris
    Gouert, Charles
    Tsoutsos, Nektarios Georgios
    2023 IEEE 29TH INTERNATIONAL SYMPOSIUM ON ON-LINE TESTING AND ROBUST SYSTEM DESIGN, IOLTS, 2023,
  • [7] Privacy-Preserving Deep Learning Based on Multiparty Secure Computation: A Survey
    Zhang, Qiao
    Xin, Chunsheng
    Wu, Hongyi
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (13) : 10412 - 10429
  • [8] A Survey on Biometric Authentication: Towards Secure and Privacy-Preserving Identification
    Rui, Zhang
    Yan, Zheng
    IEEE ACCESS, 2019, 7 : 5994 - 6009
  • [9] Towards Vertical Privacy-Preserving Symbolic Regression via Secure Multiparty Computation
    Du Nguyen Duy
    Affenzeller, Michael
    Nikzad-Langerodi, Ramin
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 2420 - 2428
  • [10] Privacy-preserving microbiome analysis using secure computation
    Wagner, Justin
    Paulson, Joseph N.
    Wang, Xiao
    Bhattacharjee, Bobby
    Bravo, Hector Corrada
    BIOINFORMATICS, 2016, 32 (12) : 1873 - 1879