An integrated modelling approach for assessing the effect of multiscale complexity on groundwater source yields

被引:6
作者
Upton, K. A. [1 ]
Jackson, C. R. [2 ]
Butler, A. P. [3 ]
Jones, M. A. [4 ]
机构
[1] British Geol Survey, Lyell Ctr, Res Ave South, Edinburgh EH14 4AP, Midlothian, Scotland
[2] British Geol Survey, Environm Sci Ctr, Nottingham NG12 5GG, Notts, England
[3] Imperial Coll London, Dept Civil & Environm Engn, London SW7 2AZ, England
[4] Thames Water Util Ltd, Clearwater Court, Vastern Rd, Reading RG1 8DB, Berks, England
基金
英国工程与自然科学研究理事会; 英国自然环境研究理事会;
关键词
Water resources; Groundwater; Sustainable yield; Multiscale modelling; OpenMI; LOCAL GRID REFINEMENT; FINITE-DIFFERENCE; SEDIMENT TRANSPORT; RESOURCES MANAGEMENT; FORCHHEIMER FLOW; ANALYTIC ELEMENT; RIVER ZENNE; OPENMI; SIMULATION; AQUIFER;
D O I
10.1016/j.jhydrol.2020.125113
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A new multi-scale groundwater modelling methodology is presented to simulate pumped water levels in abstraction boreholes within regional groundwater models, providing a robust tool for assessing the sustainable yield of supply boreholes and improving our understanding of groundwater availability during drought. A 3D borehole-scale model, which solves the Darcy-Forchheimer equation in cylindrical co-ordinates to simulate both linear and non-linear radial flow to a borehole in a heterogeneous aquifer, is embedded within a Cartesian grid, using a hybrid radial-Cartesian finite difference method. The local-scale model is coupled to a regional groundwater model, ZOOMQ3D, using the OpenMI model linkage software, providing a flexible and efficient tool for assessing the behaviour of a groundwater source within its regional hydrogeological context during historic droughts and under climate change. The advantages of the new method are demonstrated through application to a Chalk supply borehole in the UK.
引用
收藏
页数:14
相关论文
共 99 条
[11]   A parallel mesh-free contaminant transport model based on the Analytic Element and Streamline Methods [J].
Bandilla, Karl W. ;
Rabideau, Alan J. ;
Jankovic, Igor .
ADVANCES IN WATER RESOURCES, 2009, 32 (08) :1143-1153
[12]  
Betrie GD, 2011, T ASABE, V54, P1749, DOI 10.13031/2013.39847
[13]  
Butler AP, 2012, GEOL SOC SPEC PUBL, V364, P113, DOI 10.1144/SP364.9
[14]  
Butler AP, 2009, HYDROGEOL J, V17, P1849, DOI 10.1007/s10040-009-0477-4
[15]  
Butts M., 2013, INT ASS HYDROLOGICAL, P133
[16]   Simulating watersheds using loosely integrated model components: Evaluation of computational scaling using OpenMI [J].
Castronova, Anthony M. ;
Goodall, Jonathan L. .
ENVIRONMENTAL MODELLING & SOFTWARE, 2013, 39 :304-313
[17]   Integrated modeling within a Hydrologic Information System: An OpenMI based approach [J].
Castronova, Anthony M. ;
Goodall, Jonathan L. ;
Ercan, Mehmet B. .
ENVIRONMENTAL MODELLING & SOFTWARE, 2013, 39 :263-273
[18]  
Chen CS, 2003, J ATMOS OCEAN TECH, V20, P159, DOI 10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO
[19]  
2
[20]  
Connorton B.J., 1978, Quarterly Journal of Engineering Geology, V11, P127, DOI DOI 10.1144/GSL.QJEG.1978.011.02.02