Fourth-order parabolic equations with weak BMO coefficients in Reifenberg domains

被引:11
作者
Byun, Sun-Sig [1 ]
Wang, Lihe [2 ,3 ]
机构
[1] Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[3] Xi An Jiao Tong Univ, Coll Sci, Xian 710049, Peoples R China
关键词
W-2; W-p estimates; Fourth-order parabolic equations; BMO space; Reifenberg domains; Vitali covering lemma; Fractals;
D O I
10.1016/j.jde.2008.03.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study optimal W-2.p-regularity for fourth-order parabolic equations with discontinuous coefficients in general domains. We obtain the global W-2.p-regulafity for each 1 < p < infinity under the assumption that the coefficients have suitably small BMO semi-norm of weak type and the boundary of the domain is delta-Reifenberg flat. The situation of our main theorem arises when the conductivity on fractals is controlled by a random variable in the time direction. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3217 / 3252
页数:36
相关论文
共 27 条
[1]   Gradient estimates for a class of parabolic systems [J].
Acerbi, Emilio ;
Mingione, Giuseppe .
DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) :285-320
[2]   ON BMO REGULARITY FOR LINEAR ELLIPTIC-SYSTEMS [J].
ACQUISTAPACE, P .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1992, 161 :231-269
[3]   COMPACTNESS METHODS IN THE THEORY OF HOMOGENIZATION [J].
AVELLANEDA, M ;
LIN, FH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (06) :803-847
[4]   Parabolic equations in Reifenberg domains [J].
Byun, SS ;
Wang, LH .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 176 (02) :271-301
[5]   Parabolic equations with BMO coefficients in Lipschitz domains [J].
Byun, SS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 209 (02) :229-265
[6]   Elliptic equations with BMO coefficients in Reifenberg domains [J].
Byun, SS ;
Wang, LH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (10) :1283-1310
[7]   Optimal W1, p regularity theory for parabolic equations in divergence form [J].
Byun, Sun-Sig .
JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (03) :415-428
[8]   Parabolic equations in time dependent Reifenberg domains [J].
Byun, Sun-Sig ;
Wang, Lihe .
ADVANCES IN MATHEMATICS, 2007, 212 (02) :797-818
[9]  
Caffarelli LA, 1998, COMMUN PUR APPL MATH, V51, P1
[10]  
EVANS LC, 2002, CBMS REG C SER MATH, V74