A Bochev-Dohrmann-Gunzburger stabilization method for the primitive equations of the ocean

被引:1
作者
Chacon Rebollo, Tomas [1 ,2 ,3 ]
Gomez Marmol, Macarena [1 ]
Sanchez Munoz, Isabel [4 ]
机构
[1] Univ Seville, Dept EDAN, E-41080 Seville, Spain
[2] Univ Seville, Dept IMUS, E-41080 Seville, Spain
[3] BCAM, Bilbao 48009, Spain
[4] Univ Seville, Dept Matemat Aplicada 1, Seville 41014, Spain
关键词
Primitive equations; Finite elements; Stabilized methods; Inf-sup condition; ATMOSPHERE;
D O I
10.1016/j.aml.2012.10.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a low-order stabilized discretization of the primitive equations of the ocean with highly reduced computational complexity. We prove stability through a specific inf-sup condition, and weak convergence to a weak solution. We also perform some numerical tests for relevant flows. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:413 / 417
页数:5
相关论文
共 50 条
[41]   Local existence of solutions to the free boundary value problem for the primitive equations of the ocean [J].
Ignatova, Mihaela ;
Kukavica, Igor ;
Ziane, Mohammed .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (10)
[42]   Exponential time differencing for the tracer equations appearing in primitive equation ocean models [J].
Calandrini, Sara ;
Pieper, Konstantin ;
Gunzburger, Max D. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 365
[43]   SPLITTING UP METHOD FOR 2D STOCHASTIC PRIMITIVE EQUATIONS WITH MULTIPLICATIVE NOISE [J].
Peng, Xuhui ;
Zhang, Rangrang .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (02) :473-505
[47]   Maximum Principle of Optimal Control of the Primitive Equations of the Ocean with Two Point Boundary State Constraint [J].
Theodore Tachim Medjo .
Applied Mathematics and Optimization, 2010, 62 :1-26
[48]   Second-order Optimality Conditions for Optimal Control of the Primitive Equations of the Ocean with Periodic Inputs [J].
T. Tachim Medjo .
Applied Mathematics & Optimization, 2011, 63 :75-106
[49]   A second-order decoupled implicit/explicit method of the 3D primitive equations of ocean II: finite element spatial discretization [J].
He, Yinnian ;
Xu, Hui ;
Chen, Zhangxin .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 108 (07) :750-789
[50]   Global attractor of the three-dimensional primitive equations of large-scale ocean and atmosphere dynamics [J].
You, Bo ;
Li, Fang .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (05)