Self-induced compactness in banach spaces

被引:13
作者
Casazza, PG [1 ]
Jarchow, H [1 ]
机构
[1] UNIV ZURICH,INST MATH,CH-8057 ZURICH,SWITZERLAND
基金
美国国家科学基金会;
关键词
D O I
10.1017/S0308210500022770
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the question: is every compact set in a Banach space X contained in the closed unit range of a compact (or even approximable) operator on X? We give large classes of spaces where the question has an affirmative answer, but observe that it has a negative answer, in general, for approximable operators. We further construct a Banach space failing the bounded compact approximation property, though all of its duals have the metric compact approximation property.
引用
收藏
页码:355 / 362
页数:8
相关论文
共 19 条
[1]  
BELLENOT S, 1975, MICH MATH J, V22, P373
[2]  
Bonsall F. F., 1973, Ergeb. Math. Grenzgeb., V80
[3]  
CHO CM, 1985, P AM MATH SOC, V93, P466
[4]   FACTORIZATION IN GROUP ALGEBRAS [J].
COHEN, PJ .
DUKE MATHEMATICAL JOURNAL, 1959, 26 (02) :199-205
[5]   CONTINUITY OF HOMOMORPHISMS AND DERIVATIONS FROM ALGEBRAS OF APPROXIMABLE AND NUCLEAR OPERATORS [J].
DALES, HG ;
JARCHOW, H .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1994, 116 :465-473
[7]   APPROXIMATE IDENTITIES IN BANACH-ALGEBRAS OF COMPACT-OPERATORS [J].
GRONBAEK, N ;
WILLIS, GA .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1993, 36 (01) :45-53
[8]  
GROTHENDIECK A., 1955, MEM AM MATH SOC, V16
[9]   ON THE COMPACT NONNUCLEAR OPERATOR PROBLEM [J].
JOHN, K .
MATHEMATISCHE ANNALEN, 1990, 287 (03) :509-514
[10]   COMPLEMENTARY UNIVERSAL CONJUGATE BANACH SPACE AND ITS RELATION TO APPROXIMATION PROBLEM [J].
JOHNSON, WB .
ISRAEL JOURNAL OF MATHEMATICS, 1972, 13 (3-4) :301-310