Caveat mutator: alanine substitutions for conserved amino acids in RNA ligase elicit unexpected rearrangements of the active site for lysine adenylylation

被引:1
作者
Unciuleac, Mihaela-Carmen [1 ]
Goldgur, Yehuda [2 ]
Shuman, Stewart [1 ]
机构
[1] Sloan Kettering Inst, Mol Biol, 1275 York Ave, New York, NY 10065 USA
[2] Sloan Kettering Inst, Struct Biol Program, 1275 York Ave, New York, NY 10065 USA
基金
美国国家卫生研究院;
关键词
PHOSPHODIESTER BOND FORMATION; GUIDED MUTATIONAL ANALYSIS; VIRUS DNA-LIGASE; DEINOCOCCUS-RADIODURANS; CRYSTAL-STRUCTURE; NICK; RECOGNITION; SPECIFICITY; MECHANISM; 2-METAL;
D O I
10.1093/nar/gkaa238
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Naegleria gruberi RNA ligase (NgrRnl) exemplifies the Rnl5 family of adenosine triphosphate (ATP)-dependent polynucleotide ligases that seal 3 '-OH RNA strands in the context of 3 '-OH/5 '-PO4 nicked duplexes. Like all classic ligases, NgrRnl forms a covalent lysyl-AMP intermediate. A two-metal mechanism of lysine adenylylation was established via a crystal structure of the NgrRnl center dot ATP center dot(Mn2+)(2) Michaelis complex. Here we conducted an alanine scan of active site constituents that engage the ATP phosphates and the metal cofactors. We then determined crystal structures of ligase-defective NgrRnl-Ala mutants in complexes with ATP/Mn2+. The unexpected findings were that mutations K170A, E227A, K326A and R149A (none of which impacted overall enzyme structure) triggered adverse secondary changes in the active site entailing dislocations of the ATP phosphates, altered contacts to ATP, and variations in the numbers and positions of the metal ions that perverted the active sites into off-pathway states incompatible with lysine adenylylation. Each alanine mutation elicited a distinctive off-pathway distortion of the ligase active site. Our results illuminate a surprising plasticity of the ligase active site in its interactions with ATP and metals. More broadly, they underscore a valuable caveat when interpreting mutational data in the course of enzyme structure-function studies.
引用
收藏
页码:5603 / 5615
页数:13
相关论文
共 39 条
  • [1] PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution
    Adams, Paul D.
    Afonine, Pavel V.
    Bunkoczi, Gabor
    Chen, Vincent B.
    Davis, Ian W.
    Echols, Nathaniel
    Headd, Jeffrey J.
    Hung, Li-Wei
    Kapral, Gary J.
    Grosse-Kunstleve, Ralf W.
    McCoy, Airlie J.
    Moriarty, Nigel W.
    Oeffner, Robert
    Read, Randy J.
    Richardson, David C.
    Richardson, Jane S.
    Terwilliger, Thomas C.
    Zwart, Peter H.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 : 213 - 221
  • [2] Structure and two-metal mechanism of fungal tRNA ligase
    Banerjee, Ankan
    Ghosh, Shreya
    Goldgur, Yehuda
    Shuman, Stewart
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (03) : 1428 - 1439
  • [3] Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli
    Bennett, Bryson D.
    Kimball, Elizabeth H.
    Gao, Melissa
    Osterhout, Robin
    Van Dien, Stephen J.
    Rabinowitz, Joshua D.
    [J]. NATURE CHEMICAL BIOLOGY, 2009, 5 (08) : 593 - 599
  • [4] The structure of an archaeal homodimeric ligase which has RNA circularization activity
    Brooks, Mark Adrian
    Meslet-Cladiere, Laurence
    Graille, Marc
    Kuhn, Joelle
    Blondeau, Karine
    Myllykallio, Hannu
    Van Tilbeurgh, Herman
    [J]. PROTEIN SCIENCE, 2008, 17 (08) : 1336 - 1345
  • [5] RNA 3′-Phosphate Cyclase (RtcA) Catalyzes Ligase-like Adenylylation of DNA and RNA 5′-Monophosphate Ends
    Chakravarty, Anupam K.
    Shuman, Stewart
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (06) : 4117 - 4122
  • [6] HIGH-RESOLUTION EPITOPE MAPPING OF HGH-RECEPTOR INTERACTIONS BY ALANINE-SCANNING MUTAGENESIS
    CUNNINGHAM, BC
    WELLS, JA
    [J]. SCIENCE, 1989, 244 (4908) : 1081 - 1085
  • [7] Molecular architecture and ligand recognition determinants for T4 RNA ligase
    El Omari, K
    Ren, J
    Bird, LE
    Bona, MK
    Klarmann, G
    LeGrice, SFJ
    Stammers, DK
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (03) : 1573 - 1579
  • [8] Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains
    Ho, CK
    Shuman, S
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) : 12709 - 12714
  • [9] IMPROVED METHODS FOR BUILDING PROTEIN MODELS IN ELECTRON-DENSITY MAPS AND THE LOCATION OF ERRORS IN THESE MODELS
    JONES, TA
    ZOU, JY
    COWAN, SW
    KJELDGAARD, M
    [J]. ACTA CRYSTALLOGRAPHICA SECTION A, 1991, 47 : 110 - 119
  • [10] Structures of DNA-bound human ligase IV catalytic core reveal insights into substrate binding and catalysis
    Kaminski, Andrea M.
    Tumbale, Percy P.
    Schellenberg, Matthew J.
    Williams, R. Scott
    Williams, Jason G.
    Kunkel, Thomas A.
    Pedersen, Lars C.
    Bebenek, Katarzyna
    [J]. NATURE COMMUNICATIONS, 2018, 9