Non-Gaussian Distributions to Random Walk in the Context of Memory Kernels

被引:33
|
作者
dos Santos, Maike A. E. [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil
关键词
fractional diffusion equation; memory kernels; random walk; diffusion models; solution techniques; anomalous diffusion; ANOMALOUS DIFFUSION-MODELS; BROWNIAN-MOTION; KINETIC-THEORY; TRANSPORT; EQUATIONS;
D O I
10.3390/fractalfract2030020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The investigation of diffusive process in nature presents a complexity associated with memory effects. Thereby, it is necessary new mathematical models to involve memory concept in diffusion. In the following, I approach the continuous time random walks in the context of generalised diffusion equations. To do this, I investigate the diffusion equation with exponential and Mittag-Leffler memory-kernels in the context of Caputo-Fabrizio and Atangana-Baleanu fractional operators on Caputo sense. Thus, exact expressions for the probability distributions are obtained, in that non-Gaussian distributions emerge. I connect the distribution obtained with a rich class of diffusive behaviour. Moreover, I propose a generalised model to describe the random walk process with resetting on memory kernel context.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [41] Superstatistical generalised Langevin equation: non-Gaussian viscoelastic anomalous diffusion
    Slezak, Jakub
    Metzler, Ralf
    Magdziarz, Marcin
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [42] Colossal Brownian yet non-Gaussian diffusion induced by nonequilibrium noise
    Bialas, K.
    Luczka, J.
    Haenggi, P.
    Spiechowicz, J.
    PHYSICAL REVIEW E, 2020, 102 (04)
  • [43] EVOLUTION OF THE MAGNETIC FIELD LINE DIFFUSION COEFFICIENT AND NON-GAUSSIAN STATISTICS
    Snodin, A. P.
    Ruffolo, D.
    Matthaeus, W. H.
    ASTROPHYSICAL JOURNAL, 2016, 827 (02)
  • [44] Non-Gaussian noise effects in the dynamics of a short overdamped Josephson junction
    Augello, G.
    Valenti, D.
    Spagnolo, B.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 78 (02) : 225 - 234
  • [45] A random walk model with a mixed memory profile: Exponential and rectangular profile
    de Lacerda, K. J. C. C.
    da Silva, L. R.
    Viswanathan, G. M.
    Cressoni, J. C.
    da Silva, M. A. A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 597
  • [46] The non-Gaussian tops and tails of diffusing boomerangs
    Koens, Lyndon
    Lisicki, Maciej
    Lauga, Eric
    SOFT MATTER, 2017, 13 (16) : 2977 - 2982
  • [47] Asymptotics for the probability of not exceeding a curvilinear level by a Gaussian random walk
    Bakirov, N. K.
    IZVESTIYA MATHEMATICS, 2009, 73 (01) : 47 - 77
  • [48] Estimating degree distributions of large networks using non-backtracking random walk with non-uniform jump
    Palahan, Sirinda
    2015 IEEE INTERNATIONAL CONFERENCE ON ELECTRO/INFORMATION TECHNOLOGY (EIT), 2015, : 667 - 671
  • [49] Log-periodicity can appear in a non-Markovian random walk even if there is perfect memory of its history
    de Lacerda, K. J. C. C.
    Cressoni, J. C.
    Viswanathan, G. M.
    da Silva, M. A. A.
    EPL, 2020, 130 (02)
  • [50] Reconstruction of a persistent random walk from exit time distributions
    Fok, Pak-Wing
    Han, Qunhui
    Chou, Tom
    IMA JOURNAL OF APPLIED MATHEMATICS, 2015, 80 (01) : 1 - 23