Non-Gaussian Distributions to Random Walk in the Context of Memory Kernels

被引:33
|
作者
dos Santos, Maike A. E. [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil
关键词
fractional diffusion equation; memory kernels; random walk; diffusion models; solution techniques; anomalous diffusion; ANOMALOUS DIFFUSION-MODELS; BROWNIAN-MOTION; KINETIC-THEORY; TRANSPORT; EQUATIONS;
D O I
10.3390/fractalfract2030020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The investigation of diffusive process in nature presents a complexity associated with memory effects. Thereby, it is necessary new mathematical models to involve memory concept in diffusion. In the following, I approach the continuous time random walks in the context of generalised diffusion equations. To do this, I investigate the diffusion equation with exponential and Mittag-Leffler memory-kernels in the context of Caputo-Fabrizio and Atangana-Baleanu fractional operators on Caputo sense. Thus, exact expressions for the probability distributions are obtained, in that non-Gaussian distributions emerge. I connect the distribution obtained with a rich class of diffusive behaviour. Moreover, I propose a generalised model to describe the random walk process with resetting on memory kernel context.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] Nonlinear field line random walk for non-Gaussian statistics
    Shalchi, A.
    le Roux, J. A.
    Webb, G. M.
    Zank, G. P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (34)
  • [2] Non-Gaussian distributions
    Mastrangelo, M
    Mastrangelo, V
    Teuler, JM
    APPLIED MATHEMATICS AND COMPUTATION, 1999, 101 (2-3) : 99 - 124
  • [3] Non-gaussian distributions
    Mastrangelo, M
    Mastrangelo, V
    Teuler, JM
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 109 (2-3) : 225 - 247
  • [4] Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile
    Borges, G. M.
    Ferreira, A. S.
    da Silva, M. A. A.
    Cressoni, J. C.
    Viswanathan, G. M.
    Mariz, A. M.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (09)
  • [5] Riemannian Gaussian distributions, random matrix ensembles and diffusion kernels
    Santilli, Leonardo
    Tierz, Miguel
    NUCLEAR PHYSICS B, 2021, 973
  • [6] Non-Gaussian propagator for elephant random walks
    da Silva, M. A. A.
    Cressoni, J. C.
    Schuetz, Gunter M.
    Viswanathan, G. M.
    Trimper, Steffen
    PHYSICAL REVIEW E, 2013, 88 (02):
  • [7] Superstatistics and non-Gaussian diffusion
    Metzler, Ralf
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2020, 229 (05) : 711 - 728
  • [8] Structural Description of Geophysical Random Fields with Non-Gaussian Statistics
    Yakushkin, I. G.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2023, 59 (02) : 150 - 166
  • [9] Random diffusivity scenarios behind anomalous non-Gaussian diffusion
    dos Santos, M. A. F.
    Colombo, E. H.
    Anteneodo, C.
    CHAOS SOLITONS & FRACTALS, 2021, 152
  • [10] Modes of a Gaussian Random Walk
    Philip K. Rawlings
    Journal of Statistical Physics, 2003, 111 : 769 - 788