Toughening by the addition of phosphorus to a high-strength steel with ultrafine elongated grain structure

被引:8
作者
Jafari, Meysam [1 ,2 ]
Kimura, Yuuji [2 ]
Tsuzaki, Kaneaki [1 ,2 ]
机构
[1] Univ Tsukuba, Grad Sch Pure & Appl Sci, Doctoral Program Mat Sci & Engn, Tsukuba, Ibaraki 3058571, Japan
[2] Natl Inst Mat Sci, Struct Mat Unit, Tsukuba, Ibaraki 3050047, Japan
基金
日本科学技术振兴机构;
关键词
Steel; embrittlement; ultrafine microstructure; toughness; grain boundary segregation; delamination fracture; MECHANICAL-PROPERTIES; BOUNDARY SEGREGATION; IMPACT TOUGHNESS; FRACTURE; TEMPERATURES; COMPOSITES; BEHAVIOR; TENSILE; ENERGY;
D O I
10.1080/09500839.2012.750766
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Phosphorus-doped high-strength steels are typically brittle at room temperature. In contrast to the non-hardening embrittlement of body-centred cubic (bcc) steels which decreases toughness without increasing strength, we observed an increase in toughness of about 20% by adding a large amount (0.053wt%) of phosphorus (P) to a high-strength bcc steel with an ultrafine elongated ferrite grain structure processed by warm calibre rolling at 500 degrees C which produced a 91% reduction in area. The enhanced toughness is attributed to P segregation, which causes grain boundaries to become feasible crack propagation paths, thereby enhancing delamination toughening. The 0.053% P steel showed a microstructure and tensile properties similar to those of 0.001% P steel (reference steel).
引用
收藏
页码:109 / 115
页数:7
相关论文
共 50 条
[41]   An Investigation on the Strengthening Mechanism Based on Grain-Boundary Misorientation of High-Strength Pipeline Steel [J].
Duan, Qiang ;
Pan, Hongbo ;
Fu, Bin ;
Yan, Jun .
STEEL RESEARCH INTERNATIONAL, 2019, 90 (12)
[42]   Failure analysis of an advanced high-strength steel [J].
Ramirez-Ramirez, J. H. ;
Perez-Gonzalez, F. A. ;
Zapata-Hernandez, O. J. ;
Gutierrez-Platas, J. L. ;
Hernandez, L. E. ;
Quinones, M. A. ;
Garza-Montes-de-Oca, N. F. ;
Colas, R. .
ENGINEERING FAILURE ANALYSIS, 2022, 131
[43]   High-strength Damascus steel by additive manufacturing [J].
Kuernsteiner, Philipp ;
Wilms, Markus Benjamin ;
Weisheit, Andreas ;
Gault, Baptiste ;
Jaegle, Eric Aime ;
Raabe, Dierk .
NATURE, 2020, 582 (7813) :515-+
[44]   High-Si-Content Quenched and Tempered Steel for High-Strength Application [J].
Sahoo, G. ;
Kumar, P. ;
Nageswaran, K. ;
Singh, K. K. ;
Kumar, V ;
Dhua, S. K. .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (12) :9290-9301
[45]   Mo addition of high-strength seismic rebars subjected to Tempcore processes for tensile strength enhancement [J].
Choi, Woonam ;
Um, Hyungsic ;
Yi, Hyangjun ;
Kang, Namhyun .
MATERIALS & DESIGN, 2022, 219
[46]   Evolution of Microstructure and Crystallographic Texture During Welding for 1.5 GPa Ultra-high Strength Steel Toughened by an Elongated Grain Structure With Intensive Texture [J].
Fang, Chao ;
Li, Chengning ;
Di, Xinjie ;
Fu, Wen ;
Hu, Wenyi ;
Chen, Xiang ;
Ma, Ziwei .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2023, 54 (08) :3055-3068
[47]   Additive manufacturing of ultrafine-grained high-strength titanium alloys [J].
Zhang, Duyao ;
Qiu, Dong ;
Gibson, Mark A. ;
Zheng, Yufeng ;
Fraser, Hamish L. ;
StJohn, David H. ;
Easton, Mark A. .
NATURE, 2019, 576 (7785) :91-+
[48]   Effect of Nb Addition and Heat Input on Heat-Affected Zone Softening in High-Strength Low-Alloy Steel [J].
Wang, Feilong ;
Zhao, Gang ;
Hou, Yu ;
Lin, Junpin ;
Li, Ba ;
Jia, Shujun ;
Liu, Qingyou ;
Liu, Gang ;
Yang, Ping .
MATERIALS, 2022, 15 (13)
[49]   Microstructural evolution and mechanical properties of an additively manufactured high-strength steel [J].
Zhang, Youzhao ;
Zhang, Siyuan ;
Li, Xiangwei ;
Zhong, Yumei ;
Zhang, Shuyan .
OPTICS AND LASER TECHNOLOGY, 2024, 172
[50]   Experimental research on fatigue performance of high-strength structural steel series [J].
Tong, Lewei ;
Niu, Lichao ;
Ren, Zhenzhen ;
Zhao, Xiao-Ling .
JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2021, 183