On the stability of a functional equation deriving from additive and quadratic functions

被引:9
|
作者
Wang Liguang [1 ]
Li Jing [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2012年
关键词
additive mapping; quadratic mapping; quasi-beta-normed spaces; Hyers-Ulam stability;
D O I
10.1186/1687-1847-2012-98
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we investigate the Hyers-Ulam stability of the following functional equation f(x + 2y) + f(x - 2y) = f(x + y) + f(x - y) + 3f(2y) - 6f(y) on quasi-beta-normed spaces.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Fuzzy normed spaces and stability of a generalized quadratic functional equation
    Park, Choonkil
    Tamilvanan, K.
    Noori, Batool
    Moghimi, M. B.
    Najati, Abbas
    AIMS MATHEMATICS, 2020, 5 (06): : 7161 - 7174
  • [42] FUZZY STABILITY OF A GENERALIZED QUADRATIC FUNCTIONAL EQUATION
    Najati, Abbas
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 25 (03): : 405 - 417
  • [43] On the stability of the quadratic functional equation on bounded domains
    Soon-Mo Jung
    Byungbae Kim
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1999, 69 : 293 - 308
  • [44] On the stability of the quadratic functional equation on bounded domains
    Jung, SM
    Kim, B
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1999, 69 (1): : 293 - 308
  • [45] SEVERAL STABILITY PROBLEMS OF A QUADRATIC FUNCTIONAL EQUATION
    Cho, In Goo
    Koh, Hee Jeong
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 26 (01): : 99 - 113
  • [46] Generalized Hyers-Ulam Stability of the Additive Functional Equation
    Lee, Yang-Hi
    Kim, Gwang Hui
    AXIOMS, 2019, 8 (02)
  • [47] ON THE STABILITY OF THE GENERALIZED QUADRATIC AND ADDITIVE FUNCTIONAL EQUATION IN RANDOM NORMED SPACES VIA FIXED POINT METHOD
    Jin, Sun Sook
    Lee, Yang-Hi
    KOREAN JOURNAL OF MATHEMATICS, 2011, 19 (04): : 437 - 451
  • [48] Stability of Mixed Additive-Quadratic and Additive-Drygas Functional Equations
    Choi, Chang-Kwon
    Lee, Bogeun
    RESULTS IN MATHEMATICS, 2020, 75 (01)
  • [49] Stability of Quadratic Functional Equation in Fuzzy Banach Space
    Zhan, Xiaojing
    Ji, Peisheng
    MECHATRONICS, ROBOTICS AND AUTOMATION, PTS 1-3, 2013, 373-375 : 1881 - 1884
  • [50] Stability of a Generalized Quadratic Functional Equation in Schwartz Distributions
    Jae-Young CHUNGDepartment of Mathematics
    Acta Mathematica Sinica(English Series), 2009, 25 (09) : 1459 - 1468