On the stability of a functional equation deriving from additive and quadratic functions

被引:9
|
作者
Wang Liguang [1 ]
Li Jing [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2012年
关键词
additive mapping; quadratic mapping; quasi-beta-normed spaces; Hyers-Ulam stability;
D O I
10.1186/1687-1847-2012-98
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we investigate the Hyers-Ulam stability of the following functional equation f(x + 2y) + f(x - 2y) = f(x + y) + f(x - y) + 3f(2y) - 6f(y) on quasi-beta-normed spaces.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] STABILITY OF A MIXED ADDITIVE AND QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN BANACH MODULES
    Eskandani, G. Zamani
    Vaezi, Hamid
    Dehghan, Y. N.
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (04): : 1309 - 1324
  • [22] A Fixed Point Approach to the Stability of an Additive-Quadratic-Cubic-Quartic Functional Equation
    JungRye Lee
    Ji-hye Kim
    Choonkil Park
    Fixed Point Theory and Applications, 2010
  • [23] ULAM STABILITY OF AN ADDITIVE-QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES
    Hwang, Inho
    Park, Choonkil
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (02): : 421 - 436
  • [24] Solution and Stability of a Mixed Type Additive, Quadratic, and Cubic Functional Equation
    Gordji, M. Eshaghi
    Gharetapeh, S. Kaboli
    Rassias, J. M.
    Zolfaghari, S.
    ADVANCES IN DIFFERENCE EQUATIONS, 2009,
  • [25] STABILITY OF A FUNCTIONAL EQUATION COMING FROM THE CHARACTERIZATION OF THE ABSOLUTE VALUE OF ADDITIVE FUNCTIONS
    Gilanyi, Attila
    Nagatou, Kaori
    Volkmann, Peter
    ANNALS OF FUNCTIONAL ANALYSIS, 2010, 1 (02): : 1 - 6
  • [26] Hyers-Ulam stability of an additive-quadratic functional equation
    Govindan, Vediyappan
    Park, Choonkil
    Pinelas, Sandra
    Rassias, Themistocles M.
    CUBO-A MATHEMATICAL JOURNAL, 2020, 22 (02): : 233 - 255
  • [27] ON THE STABILITY OF A QUADRATIC FUNCTIONAL EQUATION
    Lee, Sang-Baek
    Park, Won-Gil
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 17 (03) : 505 - 514
  • [28] A Fixed Point Approach to the Fuzzy Stability of an Additive-Quadratic-Cubic Functional Equation
    Choonkil Park
    Fixed Point Theory and Applications, 2009
  • [29] ON STABILITY OF A FUNCTIONAL EQUATION OF QUADRATIC TYPE
    Brzdek, J.
    Jablonska, E.
    Moslehian, M. S.
    Pacho, P.
    ACTA MATHEMATICA HUNGARICA, 2016, 149 (01) : 160 - 169
  • [30] Stability of a mixed type additive and quadratic functional equation in non-Archimedean spaces
    Gordji, M. Eshaghi
    Savadkouhi, M. Bavand
    Bidkham, M.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2010, 12 (02) : 454 - 462