On the stability of a functional equation deriving from additive and quadratic functions

被引:9
作者
Wang Liguang [1 ]
Li Jing [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2012年
关键词
additive mapping; quadratic mapping; quasi-beta-normed spaces; Hyers-Ulam stability;
D O I
10.1186/1687-1847-2012-98
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we investigate the Hyers-Ulam stability of the following functional equation f(x + 2y) + f(x - 2y) = f(x + y) + f(x - y) + 3f(2y) - 6f(y) on quasi-beta-normed spaces.
引用
收藏
页数:12
相关论文
共 28 条
[1]  
Aoki T., 1950, J. Math. Soc. Japan, V2, P64
[2]  
Cadariu I, 2004, GRAZER MATH BERICHTE, V346, P43
[3]  
Cadariu I, 2003, J INEQUAL PURE APPL, V4, P1
[4]   ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES [J].
CZERWIK, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 :59-64
[5]  
Czerwik Stefan, 2002, Functional Equations and Inequalities in Several Variables, P4
[6]   A FIXED POINT THEOREM OF ALTERNATIVE FOR CONTRACTIONS ON A GENERALIZED COMPLETE METRIC SPACE [J].
DIAZ, JB ;
MARGOLIS, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 74 (02) :305-&
[7]  
Gajda Z., 1991, Internat. J. Math. Math. Sci., V14, P431, DOI [10.1155/S016117129100056X, DOI 10.1155/S016117129100056X]
[8]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[9]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[10]  
Jung S.M., 2001, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis