Research Progress on Conducting Polymer-Based Biomedical Applications

被引:45
作者
Park, Yohan [1 ]
Jung, Jaehan [2 ]
Chang, Mincheol [3 ,4 ,5 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Hongik Univ, Dept Mat Sci & Engn, Sejong 30016, South Korea
[3] Chonnam Natl Univ, Grad Sch, Dept Polymer Engn, Gwangju 61186, South Korea
[4] Chonnam Natl Univ, Sch Polymer Sci & Engn, Gwangju 61186, South Korea
[5] Chonnam Natl Univ, Alan G MacDiarmid Energy Res Inst, Gwangju 61186, South Korea
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 06期
基金
新加坡国家研究基金会;
关键词
conducting polymers; biomedical engineering; biosensors; tissue engineering; artificial muscles; drug delivery; NANOFIBROUS SCAFFOLDS; DRUG-DELIVERY; IN-VIVO; POLYPYRROLE; TISSUE; COMPOSITE; BIOCOMPATIBILITY; BIOSENSORS; HYDROGEL; SURFACE;
D O I
10.3390/app9061070
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Conducting polymers (CPs) have attracted significant attention in a variety of research fields, particularly in biomedical engineering, because of the ease in controlling their morphology, their high chemical and environmental stability, and their biocompatibility, as well as their unique optical and electrical properties. In particular, the electrical properties of CPs can be simply tuned over the full range from insulator to metal via a doping process, such as chemical, electrochemical, charge injection, and photo-doping. Over the past few decades, remarkable progress has been made in biomedical research including biosensors, tissue engineering, artificial muscles, and drug delivery, as CPs have been utilized as a key component in these fields. In this article, we review CPs from the perspective of biomedical engineering. Specifically, representative biomedical applications of CPs are briefly summarized: biosensors, tissue engineering, artificial muscles, and drug delivery. The motivation for use of and the main function of CPs in these fields above are discussed. Finally, we highlight the technical and scientific challenges regarding electrical conductivity, biodegradability, hydrophilicity, and the loading capacity of biomolecules that are faced by CPs for future work. This is followed by several strategies to overcome these drawbacks.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Biodegradable Conducting Polymer-Based Composites for Biomedical Applications-A Review
    Khan, Tabrej
    Vadivel, Gayathri
    Ramasamy, Balan
    Murugesan, Gowtham
    Sebaey, Tamer A.
    POLYMERS, 2024, 16 (11)
  • [2] Sputtering of Electrospun Polymer-Based Nanofibers for Biomedical Applications: A Perspective
    Kadavil, Hana
    Zagho, Moustafa
    Elzatahry, Ahmed
    Altahtamouni, Talal
    NANOMATERIALS, 2019, 9 (01)
  • [3] Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications
    Zhao, Lingling
    Zhou, Yifan
    Zhang, Jiaying
    Liang, Hongze
    Chen, Xianwu
    Tan, Hui
    PHARMACEUTICS, 2023, 15 (10)
  • [4] Polymer-based Nanogenerator for Biomedical Applications
    Li Jun
    Long Yin
    Wang Xudong
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2020, 36 (01) : 41 - 54
  • [5] Conductive polymer-based sensors for biomedical applications
    Nambiar, Shruti
    Yeow, John T. W.
    BIOSENSORS & BIOELECTRONICS, 2011, 26 (05) : 1825 - 1832
  • [6] Recent advances of polymer-based piezoelectric composites for biomedical applications
    Mokhtari, Fatemeh
    Azimi, Bahareh
    Salehi, Maryam
    Hashemikia, Samaneh
    Danti, Serena
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2021, 122
  • [7] Progress in Conducting Polymer-Based Electrospun fibers for Supercapacitor Applications: A Review
    Prasannakumar, Anandhu Thejas
    Mohan, Ranjini R. R.
    Rohith, R.
    Manju, V
    Varma, Sreekanth J. J.
    CHEMISTRYSELECT, 2023, 8 (17):
  • [8] Nanoporous Conducting Polymer-Based Coatings in Microextraction Techniques for Environmental and Biomedical Applications
    Szultka-Mlynska, Malgorzata
    Olszowy, Pawel
    Buszewski, Boguslaw
    CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY, 2016, 46 (03) : 236 - 247
  • [9] Electrically Conducting Polymer-Based Nanofibrous Scaffolds for Tissue Engineering Applications
    Lee, Jae Young
    POLYMER REVIEWS, 2013, 53 (03) : 443 - 459
  • [10] Conducting polymer PEDOTs for biomedical application
    Zhou, Meng
    Zhu, Ling
    An, Siying
    Chen, Shuai
    SYNTHETIC METALS, 2024, 307