Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors

被引:454
作者
Song, Shijiao [1 ]
Ma, Fangwei [1 ]
Wu, Guang [1 ]
Ma, Di [1 ]
Geng, Weidan [1 ]
Wan, Jiafeng [1 ]
机构
[1] Heilongjiang Univ, Sch Chem & Mat Sci, Key Lab Funct Inorgan Mat Chem, Minist Educ China, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
OXYGEN REDUCTION; VERSATILE STRATEGY; NANOPOROUS CARBON; ENERGY-CONVERSION; ACTIVATED CARBONS; SURFACE-AREA; PERFORMANCE; NITROGEN; AEROGELS; LIGNIN;
D O I
10.1039/c5ta04721h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Corn husk, a renewable biomass, has been successfully explored as a low-cost crude carbon source to prepare advanced higher-value 3D HPCs by means of KOH pre-treatment and direct pyrolysis, the synthesis route is simple, self-templating and easy to scale-up for industrialization. The CHHPCs present many advantages for supercapacitor applications, including higher surface area (928 m(2) g(-1)), hierarchical porosity consisting of macro, meso, and micropores, a turbostratic carbon structure, uniform pore size, 3D architecture and rich O-doping (17.1 wt%). The supercapacitor performance of CHHPCs was evaluated in a 6 M KOH electrolyte and 1 M Na2SO4 electrolyte. The CHHPCs exhibit a high specific capacitance of 356 F g(-1) and 300 F g(-1) at 1 A g(-1), 20 A g(-1), respectively, ultra-high rate capability with 88% retention rate from 1 to 10 A g(-1) and outstanding cycling stability with 95% capacitance retention after 2500 cycles. The CHHPCs symmetric supercapacitor display a high energy density of 21 W h kg(-1) at a power density of 875 W kg(-1) and retains as high as 11 W h kg(-1) at 5600 W kg(-1) in 1 M Na2SO4 electrolyte. The facile, efficient and template-free synthesis strategy for novel 3D-HPCs from biomass sources may promote commercial application of 3D-HPCs in the fields of supercapacitors, lithium ion batteries, fuel cells and sorbents.
引用
收藏
页码:18154 / 18162
页数:9
相关论文
共 83 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Carbons and Electrolytes for Advanced Supercapacitors [J].
Beguin, Francois ;
Presser, Volker ;
Balducci, Andrea ;
Frackowiak, Elzbieta .
ADVANCED MATERIALS, 2014, 26 (14) :2219-2251
[3]   Symmetric supercapacitors based on porous 3D interconnected carbon framework [J].
Bello, Abdulhakeem ;
Barzegar, Farshad ;
Momodu, Damilola ;
Dangbegnon, Julien ;
Taghizadeh, Fatemeh ;
Manyala, Ncholu .
ELECTROCHIMICA ACTA, 2015, 151 :386-392
[4]   Cotton derived carbonaceous aerogels for the efficient removal of organic pollutants and heavy metal ions [J].
Chen, He ;
Wang, Xiangxue ;
Li, Jiaxing ;
Wang, Xiangke .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (11) :6073-6081
[5]   Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries [J].
Chen, Li ;
Zhang, Yongzhi ;
Lin, Chaohong ;
Yang, Wen ;
Meng, Yan ;
Guo, Yong ;
Li, Menglong ;
Xiao, Dan .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (25) :9684-9690
[6]   Three-Dimensional Heteroatom-Doped Carbon Nanofiber Networks Derived from Bacterial Cellulose for Supercapacitors [J].
Chen, Li-Feng ;
Huang, Zhi-Hong ;
Liang, Hai-Wei ;
Gao, Huai-Ling ;
Yu, Shu-Hong .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (32) :5104-5111
[7]  
Chen P, 2014, ENERG ENVIRON SCI, V7, P4095, DOI [10.1039/c4ee02531h, 10.1039/C4EE02531H]
[8]   High-Performance Supercapacitors Based on Hierarchically Porous Graphite Particles [J].
Chen, Zheng ;
Wen, Jing ;
Yan, Chunzhu ;
Rice, Lynn ;
Sohn, Hiesang ;
Shen, Meiqing ;
Cai, Mei ;
Dunn, Bruce ;
Lu, Yunfeng .
ADVANCED ENERGY MATERIALS, 2011, 1 (04) :551-556
[9]   Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage [J].
Cheng, Ping ;
Gao, Shuangyan ;
Zang, Peiyu ;
Yang, Xiaofan ;
Bai, Yonglong ;
Xu, Hua ;
Liu, Zonghuai ;
Lei, Zhibin .
CARBON, 2015, 93 :315-324
[10]   Biomass-Derived Porous Carbon Materials: Synthesis and Catalytic Applications [J].
De, Sudipta ;
Balu, Alina Mariana ;
van der Waal, Jan C. ;
Luque, Rafael .
CHEMCATCHEM, 2015, 7 (11) :1608-1629