A finite element variational multiscale method for incompressible flow

被引:3
|
作者
Jiang, Yu [1 ]
Mei, Liquan [2 ]
Wei, Huiming [3 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Peoples R China
[2] Xi An Jiao Tong Univ, Ctr Computat Geosci, Xian 710049, Peoples R China
[3] China Nucl Power Simulat Technol Co Ltd, Shenzhen 518115, Peoples R China
关键词
Finite element; Variational multiscale method(VMS); Incompressible flow; Navier-Stokes equation; NAVIER-STOKES EQUATIONS; ADVECTION-DIFFUSION; GALERKIN METHOD; ERROR; CONSERVATION;
D O I
10.1016/j.amc.2015.05.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a numerical scheme, prove stability, existence of solutions, uniqueness and convergence of the incompressible Navier-Stokes equations. It has the advantage of being defined from strictly algebraic considerations. A significant feature of the present method is that the structure of the stabilization term based on the multiscale enrichment and derived from the Navier-Stokes problem itself. Ample numerical experiments are carried out to confirm the theory and illustrate the effectiveness of the scheme on incompressible fluid. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:374 / 384
页数:11
相关论文
共 50 条
  • [41] A finite-element coarse-grid projection method for incompressible flow simulations
    Kashefi, Ali
    Staples, Anne E.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2018, 44 (04) : 1063 - 1090
  • [42] Convergence of a nonconforming multiscale finite element method
    Efendiev, YR
    Hou, TY
    Wu, XH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (03) : 888 - 910
  • [43] Variational multiscale method for nonequilibrium plasma flows
    Trelles, Juan Pablo
    Modirkhazeni, S. Mahnaz
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 282 : 87 - 131
  • [44] A conservative finite element method for the incompressible Euler equations with variable density
    Gawlik, Evan S.
    Gay-Balmaz, Francois
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 412 (412)
  • [45] Stabilized finite element method for incompressible flows with high Reynolds number
    Hachem, E.
    Rivaux, B.
    Kloczko, T.
    Digonnet, H.
    Coupez, T.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (23) : 8643 - 8665
  • [46] A cell-based smoothed finite element method stabilized by implicit SUPG/SPGP/Fractional step method for incompressible flow
    Liu, Mingyang
    Gao, Guangjun
    Zhu, Huifen
    Jiang, Chen
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2021, 124 : 194 - 210
  • [47] An adaptive virtual element method for incompressible flow
    Wang, Ying
    Wang, Gang
    Wang, Feng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 101 : 63 - 73
  • [48] A variational multiscale finite element method for monolithic ALE computations of shock hydrodynamics using nodal elements
    Zeng, X.
    Scovazzi, G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 315 : 577 - 608
  • [50] A parallel finite element method for incompressible magnetohydrodynamics equations
    Dong, Xiaojing
    He, Yinnian
    APPLIED MATHEMATICS LETTERS, 2020, 102