A finite element variational multiscale method for incompressible flow

被引:3
|
作者
Jiang, Yu [1 ]
Mei, Liquan [2 ]
Wei, Huiming [3 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Peoples R China
[2] Xi An Jiao Tong Univ, Ctr Computat Geosci, Xian 710049, Peoples R China
[3] China Nucl Power Simulat Technol Co Ltd, Shenzhen 518115, Peoples R China
关键词
Finite element; Variational multiscale method(VMS); Incompressible flow; Navier-Stokes equation; NAVIER-STOKES EQUATIONS; ADVECTION-DIFFUSION; GALERKIN METHOD; ERROR; CONSERVATION;
D O I
10.1016/j.amc.2015.05.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a numerical scheme, prove stability, existence of solutions, uniqueness and convergence of the incompressible Navier-Stokes equations. It has the advantage of being defined from strictly algebraic considerations. A significant feature of the present method is that the structure of the stabilization term based on the multiscale enrichment and derived from the Navier-Stokes problem itself. Ample numerical experiments are carried out to confirm the theory and illustrate the effectiveness of the scheme on incompressible fluid. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:374 / 384
页数:11
相关论文
共 50 条
  • [31] Variational Multiscale Methods for incompressible flows
    Gravemeier, V.
    Lenz, S.
    Wall, W. A.
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2007, 1 (2-4) : 444 - 466
  • [32] A Multiscale Finite Element Formulation for the Incompressible Navier-Stokes Equations
    Baptista, Riedson
    Bento, Sergio S.
    Santos, Isaac P.
    Lima, Leonardo M.
    Valli, Andrea M. P.
    Catabriga, Lucia
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS (ICCSA 2018), PT II, 2018, 10961 : 253 - 267
  • [33] Gauge finite element method for incompressible flows
    Weinan, E
    Liu, JG
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2000, 34 (08) : 701 - 710
  • [34] Numerical computations of viscous, incompressible flow problems using a two-level finite element method
    Fairag, F
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (06): : 1919 - 1929
  • [35] A PARALLEL VARIATIONAL MULTISCALE METHOD FOR INCOMPRESSIBLE FLOWS BASED ON THE PARTITION OF UNITY
    Xie, Cong
    Zheng, Haibiao
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2014, 11 (04) : 854 - 865
  • [36] Edge-based finite element implementation of the residual-based variational multiscale method
    Lins, Erb F.
    Elias, Renato N.
    Guerra, Gabriel M.
    Rochinha, Fernando A.
    Coutinho, Alvaro L. G. A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 61 (01) : 1 - 22
  • [37] A two-level fully discrete finite element variational multiscale method for the unsteady Navier-Stokes equations
    Xue, Jufeng
    Shang, Yueqiang
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (02):
  • [38] Modified Method of Characteristics Variational Multiscale Finite Element Method for Time Dependent Navier-Stokes Problems
    Si, Zhiyong
    Wang, Yunxia
    Feng, Xinlong
    MATHEMATICAL MODELLING AND ANALYSIS, 2015, 20 (05) : 658 - 680
  • [39] New stabilized finite element method for time-dependent incompressible flow problems
    Shang, Yueqiang
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 62 (02) : 166 - 187
  • [40] An Accurate Finite Element Method for the Numerical Solution of Isothermal and Incompressible Flow of Viscous Fluid
    Abali, Bilen Emek
    FLUIDS, 2019, 4 (01):