Coenzyme Q10 protects against burn-induced mitochondrial dysfunction and impaired insulin signaling in mouse skeletal muscle

被引:25
作者
Nakazawa, Harumasa [1 ,2 ,3 ]
Ikeda, Kazuhiro [4 ]
Shinozaki, Shohei [1 ,2 ,5 ]
Yasuhara, Shingo [1 ,2 ]
Yu, Yong-Ming [2 ,6 ]
Martyn, J. A. Jeevendra [1 ,2 ]
Tompkins, Ronald G. [2 ,6 ]
Yorozu, Tomoko [3 ]
Inoue, Satoshi [4 ,7 ]
Kaneki, Masao [1 ,2 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Dept Anesthesia Crit Care & Pain Med, Charlestown, MA USA
[2] Shriners Hosp Children, Boston, MA USA
[3] Kyorin Univ, Sch Med, Dept Anesthesiol, Tokyo, Japan
[4] Saitama Med Univ, Res Ctr Genom Med, Div Gene Regulat & Signal Transduct, Moroyama, Saitama, Japan
[5] Tokyo Med & Dent Univ, Dept Life Sci & Bioeth, Tokyo, Japan
[6] Harvard Med Sch, Massachusetts Gen Hosp, Dept Surg, Boston, MA 02115 USA
[7] Tokyo Metropolitan Inst Gerontol, Tokyo, Japan
来源
FEBS OPEN BIO | 2019年 / 9卷 / 02期
基金
美国国家卫生研究院;
关键词
burn injury; coenzyme Q10; insulin resistance; mitochondrial dysfunction; skeletal muscle; NLRP3; INFLAMMASOME; OXIDATIVE STRESS; INJURY; Q(10); DNA; RESISTANCE; OPA1; PHOSPHORYLATION; SUPPLEMENTATION; ASSOCIATION;
D O I
10.1002/2211-5463.12580
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondrial dysfunction is associated with metabolic alterations in various disease states, including major trauma (e.g., burn injury). Metabolic derangements, including muscle insulin resistance and hyperlactatemia, are a clinically significant complication of major trauma. Coenzyme Q10 (CoQ10) is an essential cofactor for mitochondrial electron transport, and its reduced form acts as a lipophilic antioxidant. Here, we report that burn injury induces impaired muscle insulin signaling, hyperlactatemia, mitochondrial dysfunction (as indicated by suppressed mitochondrial oxygen consumption rates), morphological alterations of the mitochondria (e. g., enlargement, and loss of cristae structure), mitochondrial oxidative stress, and disruption of mitochondrial integrity (as reflected by increased mitochondrial DNA levels in the cytosol and circulation). All of these alterations were significantly alleviated by CoQ10 treatment compared with vehicle alone. These findings indicate that CoQ10 treatment is efficacious in protecting against mitochondrial dysfunction and insulin resistance in skeletal muscle of burned mice. Our data highlight CoQ10 as a potential new strategy to prevent mitochondrial damage and metabolic dysfunction in burn patients.
引用
收藏
页码:348 / 363
页数:16
相关论文
共 50 条
  • [31] Effects of Coenzyme Q10 on Bladder Dysfunction Induced by Chronic Bladder Ischemia in a Rat Model
    Kim, Jong Wook
    Jang, Hoon Ah
    Bae, Jae Hyun
    Lee, Jeong Gu
    JOURNAL OF UROLOGY, 2013, 189 (06) : 2371 - 2376
  • [32] Coenzyme Q10 Prevents Mitochondrial Dysfunction and Facilitates Pharmacological Activity of Atorvastatin in 6-OHDA Induced Dopaminergic Toxicity in Rats
    Santosh Kumar Prajapati
    Debapriya Garabadu
    Sairam Krishnamurthy
    Neurotoxicity Research, 2017, 31 : 478 - 492
  • [33] Coenzyme Q10 Prevents Mitochondrial Dysfunction and Facilitates Pharmacological Activity of Atorvastatin in 6-OHDA Induced Dopaminergic Toxicity in Rats
    Prajapati, Santosh Kumar
    Garabadu, Debapriya
    Krishnamurthy, Sairam
    NEUROTOXICITY RESEARCH, 2017, 31 (04) : 478 - 492
  • [34] Coenzyme Q10 protects neural stem cells against hypoxia by enhancing survival signals
    Park, Jinse
    Park, Hyun-Hee
    Choi, Hojin
    Kim, Young Seo
    Yu, Hyun-Jeung
    Lee, Kyu-Yong
    Lee, Young Joo
    Kim, Seung Hyun
    Koh, Seong-Ho
    BRAIN RESEARCH, 2012, 1478 : 64 - 73
  • [35] Mitochondrial dysfunction in antiphospholipid syndrome: implications in the pathogenesis of the disease and effects of coenzyme Q10 treatment
    Perez-Sanchez, Carlos
    Ruiz-Limon, Patricia
    Angeles Aguirre, Maria
    Laura Bertolaccini, Maria
    Khamashta, Munther A.
    Rodriguez-Ariza, Antonio
    Segui, Pedro
    Collantes-Estevez, Eduardo
    Barbarroja, Nuria
    Khraiwesh, Husam
    Antonio Gonzalez-Reyes, Jose
    Manuel Villalba, Jose
    Velasco, Francisco
    Jose Cuadrado, Maria
    Lopez-Pedrera, Chary
    BLOOD, 2012, 119 (24) : 5859 - 5870
  • [36] Protective effects of trimetazidine and coenzyme Q10 on cisplatin-induced cardiotoxicity by alleviating oxidative stress and mitochondrial dysfunction
    Zhao, Li
    ANATOLIAN JOURNAL OF CARDIOLOGY, 2019, 22 (05) : 232 - 239
  • [37] Effect of Mitochondrial Dysfunction and Oxidative Stress on Endogenous Levels of Coenzyme Q10 in Human Cells
    Yen, Hsiu-Chuan
    Chen, Feng-Yuan
    Chen, Shih-Wei
    Huang, Yu-Hsiang
    Chen, Yun-Ru
    Chen, Chih-Wei
    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, 2011, 25 (05) : 280 - 289
  • [38] Protection of rat skeletal muscle fibers by either L-carnitine or coenzyme Q10 against statins toxicity mediated by mitochondrial reactive oxygen generation
    La Guardia, P. G.
    Alberici, L. C.
    Ravagnani, F. G.
    Catharino, R. R.
    Vercesi, A. E.
    FRONTIERS IN PHYSIOLOGY, 2013, 4
  • [39] Targeted overexpression of mitochondrial catalase protects against cancer chemotherapy-induced skeletal muscle dysfunction
    Gilliam, Laura A. A.
    Lark, Daniel S.
    Reese, Lauren R.
    Torres, Maria J.
    Ryan, Terence E.
    Lin, Chien-Te
    Cathey, Brook L.
    Neufer, P. Darrell
    AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2016, 311 (02): : E293 - E301
  • [40] Cellular redox activity of coenzyme Q10:: Effect of CoQ10 supplementation on human skeletal muscle
    Linnane, AW
    Kopsidas, G
    Zhang, C
    Yarovaya, N
    Kovalenko, S
    Papakostopoulos, P
    Eastwood, H
    Graves, S
    Richardson, M
    FREE RADICAL RESEARCH, 2002, 36 (04) : 445 - 453