ANALYSIS OF OPTIMAL SUPERCONVERGENCE OF DISCONTINUOUS GALERKIN METHOD FOR LINEAR HYPERBOLIC EQUATIONS

被引:90
作者
Yang, Yang [1 ]
Shu, Chi-Wang [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
discontinuous Galerkin method; conservation laws; superconvergence; cell average; initial discretization; error estimates; Radau points; FINITE-ELEMENT-METHOD; CONSERVATION-LAWS; ERROR ESTIMATION; SYSTEMS;
D O I
10.1137/110857647
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the superconvergence of the error for the discontinuous Galerkin (DG) finite element method for linear conservation laws when upwind fluxes are used. We prove that if we apply piecewise kth degree polynomials, the error between the DG solution and the exact solution is (k + 2) th order superconvergent at the downwind-biased Radau points with suitable initial discretization. Moreover, we also prove the DG solution is (k + 2) th order superconvergent both for the cell averages and for the error to a particular projection of the exact solution. The superconvergence result in this paper leads to a new a posteriori error estimate. Our analysis is valid for arbitrary regular meshes and for P-k polynomials with arbitrary k >= 1, and for both periodic boundary conditions and for initial-boundary value problems. We perform numerical experiments to demonstrate that the superconvergence rate proved in this paper is optimal.
引用
收藏
页码:3110 / 3133
页数:24
相关论文
共 20 条
[1]   A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems [J].
Adjerid, S ;
Devine, KD ;
Flaherty, JE ;
Krivodonova, L .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (11-12) :1097-1112
[2]   Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem [J].
Adjerid, Slimane ;
Massey, Thomas C. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (25-28) :3331-3346
[3]   DISCONTINUOUS GALERKIN ERROR ESTIMATION FOR LINEAR SYMMETRIZABLE HYPERBOLIC SYSTEMS [J].
Adjerid, Slimane ;
Weinhart, Thomas .
MATHEMATICS OF COMPUTATION, 2011, 80 (275) :1335-1367
[4]   Asymptotically exact a posteriori error estimates for a one-dimensional linear hyperbolic problem [J].
Adjerid, Slimane ;
Baccouch, Mahboub .
APPLIED NUMERICAL MATHEMATICS, 2010, 60 (09) :903-914
[5]   Discontinuous Galerkin error estimation for linear symmetric hyperbolic systems [J].
Adjerid, Slimane ;
Weinhart, Thomas .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (37-40) :3113-3129
[6]   Superconvergence and time evolution of discontinuous Galerkin finite element solutions [J].
Cheng, Yingda ;
Shu, Chi-Wang .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (22) :9612-9627
[7]   SUPERCONVERGENCE OF DISCONTINUOUS GALERKIN AND LOCAL DISCONTINUOUS GALERKIN SCHEMES FOR LINEAR HYPERBOLIC AND CONVECTION-DIFFUSION EQUATIONS IN ONE SPACE DIMENSION [J].
Cheng, Yingda ;
Shu, Chi-Wang .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) :4044-4072
[8]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[9]  
Cockburn B, 2003, MATH COMPUT, V72, P577, DOI 10.1090/S0025-5718-02-01464-3
[10]   The Runge-Kutta discontinuous Galerkin method for conservation laws V - Multidimensional systems [J].
Cockburn, B ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 141 (02) :199-224