Fractal dimension of a random invariant set

被引:37
作者
Langa, JA
Robinson, JC [1 ]
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
[2] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2006年 / 85卷 / 02期
关键词
random invariant set; fractal dimension; parabolic equations;
D O I
10.1016/j.matpur.2005.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In recent years many deterministic parabolic equations have been shown to possess global attractors which, despite being subsets of an infinite-dimensional phase space, are finite-dimensional objects. Debussche showed how to generalize the deterministic theory to show that the random attractors of the corresponding stochastic equations have finite Hausdorff dimension. However, to deduce a parametrization of a 'finite-dimensional' set by a finite number of coordinates a bound on the fractal (upper box-counting) dimension is required. There are non-trivial problems in extending Debussche's techniques to this case, which can be overcome by careful use of the Poincare recurrence theorem. We prove that under the same conditions as in Debussche's paper and an additional concavity assumption, the fractal dimension enjoys the same bound as the Hausdorff dimension. We apply our theorem to the 2d Navier-Stokes equations with additive noise, and give two results that allow different long-time states to be distinguished by a finite number of observations. (c) 2005 Elsevier SAS. All rights reserved.
引用
收藏
页码:269 / 294
页数:26
相关论文
共 50 条
  • [31] Fractal Dimension of Random Attractors for Non-autonomous Fractional Stochastic Ginzburg—Landau Equations
    Chun Xiao Guo
    Ji Shu
    Xiao Hu Wang
    Acta Mathematica Sinica, English Series, 2020, 36 : 318 - 336
  • [32] Fractal Dimension of Random Attractors for Non-autonomous Fractional Stochastic Ginzburg–Landau Equations
    Chun Xiao GUO
    Ji SHU
    Xiao Hu WANG
    Acta Mathematica Sinica,English Series, 2020, 36 (03) : 318 - 336
  • [33] Fractal dimension of random attractors for stochastic non-autonomous reaction-diffusion equations
    Zhou, Shengfan
    Tian, Yongxiao
    Wang, Zhaojuan
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 276 : 80 - 95
  • [34] Fractal structure and fractal dimension determination at nanometer scale
    张跃
    李启楷
    褚武扬
    王琛
    白春礼
    Science China Mathematics, 1999, (09) : 965 - 972
  • [35] Fractal dimension for fractal structures: Applications to the domain of words
    Fernandez-Martinez, M.
    Sanchez-Granero, M. A.
    Segovia, J. E. Trinidad
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (03) : 1193 - 1199
  • [36] Fractal structure and fractal dimension determination at nanometer scale
    Yue Zhang
    Qikai Li
    Wuyang Chu
    Chen Wang
    Chunli Bai
    Science in China Series A: Mathematics, 1999, 42 : 965 - 972
  • [37] Fractal Modeling and Fractal Dimension Description of Urban Morphology
    Chen, Yanguang
    ENTROPY, 2020, 22 (09)
  • [38] Fractal dimension for fractal structures: A Hausdorff approach revisited
    Fernandez-Martinez, M.
    Sanchez-Granero, M. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (01) : 321 - 330
  • [39] Fractal structure and fractal dimension determination at nanometer scale
    Zhang, Y
    Li, QK
    Chu, WY
    Wang, C
    Bai, CL
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 1999, 42 (09): : 965 - 972
  • [40] FRACTAL DIMENSION OF MULTIVARIATE α-FRACTAL FUNCTIONS AND APPROXIMATION ASPECTS
    Pandey, Megha
    Agrawal, Vishal
    Som, Tanmoy
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)