Slow escaping points of quasiregular mappings

被引:4
|
作者
Nicks, Daniel A. [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
FIXED-POINTS; SPIDERS WEB; MAPS; SETS; GROWTH; FATOU;
D O I
10.1007/s00209-016-1687-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article concerns the iteration of quasiregular mappings on and entire functions on . It is shown that there are always points at which the iterates of a quasiregular map tend to infinity at a controlled rate. Moreover, an asymptotic rate of escape result is proved that is new even for transcendental entire functions. Let be quasiregular of transcendental type. Using novel methods of proof, we generalise results of Rippon and Stallard in complex dynamics to show that the Julia set of f contains points at which the iterates tend to infinity arbitrarily slowly. We also prove that, for any large R, there is a point x with modulus approximately R such that the growth of is asymptotic to the iterated maximum modulus .
引用
收藏
页码:1053 / 1071
页数:19
相关论文
共 50 条
  • [1] The fast escaping set for quasiregular mappings
    Bergweiler, Walter
    Drasin, David
    Fletcher, Alastair
    ANALYSIS AND MATHEMATICAL PHYSICS, 2014, 4 (1-2) : 83 - 98
  • [3] Superattracting fixed points of quasiregular mappings
    Fletcher, Alastair
    Nicks, Daniel A.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2016, 36 : 781 - 793
  • [4] SLOW ESCAPING POINTS OF MEROMORPHIC FUNCTIONS
    Rippon, P. J.
    Stallard, G. M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (08) : 4171 - 4201
  • [5] THE ESCAPING SET OF A QUASIREGULAR MAPPING
    Bergweiler, Walter
    Fletcher, Alastair
    Langley, Jim
    Meyer, Janis
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (02) : 641 - 651
  • [6] Quasiregular Mappings, Curvature & Dynamics
    Martin, Gaven J.
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES, 2010, : 1433 - 1449
  • [7] Normal and quasinormal families of quasiregular mappings
    Huang, Xiaojun
    Liu, Jinsong
    QUASICONFORMAL MAPPINGS, RIEMANN SURFACES, AND TEICHMULLER SPACES, 2012, 575 : 199 - 209
  • [8] STRONGLY AUTOMORPHIC MAPPINGS AND JULIA SETS OF UNIFORMLY QUASIREGULAR MAPPINGS
    Fletcher, Alastair
    Macclure, Douglas
    JOURNAL D ANALYSE MATHEMATIQUE, 2020, 141 (02): : 483 - 520
  • [9] Quasiregular Mappings on Sub-Riemannian Manifolds
    Faessler, Katrin
    Lukyanenko, Anton
    Peltonen, Kirsi
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (03) : 1754 - 1794
  • [10] EREMENKO POINTS AND THE STRUCTURE OF THE ESCAPING SET
    Rippon, P. J.
    Stallard, G. M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (05) : 3083 - 3111