Optimal dispatch of zero-carbon-emission micro Energy Internet integrated with non-supplementary fired compressed air energy storage system

被引:79
|
作者
Li, Rui [1 ]
Chen, Laijun [1 ]
Yuan, Tiejiang [2 ]
Li, Chunlai [3 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Xinjiang Univ, Dept Elect Engn, Urumqi 830046, Peoples R China
[3] Qinghai Elect Power Corp, Qinghai Elect Power Res Inst, Xining 810008, Peoples R China
基金
中国国家自然科学基金;
关键词
Zero-carbon-emission micro Energy Internet; Non-supplementary fired compressed air energy storage; District heating network; Power distribution network; DistFlow; Mixed integer linear programming; OPTIMAL POWER-FLOW; OPTIMAL OPERATION;
D O I
10.1007/s40565-016-0241-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To utilize heat and electricity in a clean and integrated manner, a zero-carbon-emission micro Energy Internet (ZCE-MEI) architecture is proposed by incorporating non-supplementary fired compressed air energy storage (NSF-CAES) hub. A typical ZCE-MEI combining power distribution network (PDN) and district heating network (DHN) with NSF-CAES is considered in this paper. NSF-CAES hub is formulated to take the thermal dynamic and pressure behavior into account to enhance dispatch flexibility. A modified DistFlow model is utilized to allow several discrete and continuous reactive power compensators to maintain voltage quality of PDN. Optimal operation of the ZCE-MEI is firstly modeled as a mixed integer nonlinear programming (MINLP). Several transformations and simplifications are taken to convert the problem as a mixed integer linear programming (MILP) which can be effectively solved by CPLEX. A typical test system composed of a NSF-CAES hub, a 33-bus PDN, and an 8-node DHN is adopted to verify the effectiveness of the proposed ZCE-MEI in terms of reducing operation cost and wind curtailment.
引用
收藏
页码:566 / 580
页数:15
相关论文
共 50 条
  • [31] Optimal Dispatch of Integrated Energy System Considering Complementary Coordination of Electric/Thermal Energy Storage
    Diao H.
    Li P.
    Wang J.
    Wang D.
    Li Z.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2020, 35 (21): : 4532 - 4543
  • [32] Design and evaluation of integrated energy system combining solar energy and compressed-air energy storage
    Wang, J. L.
    Yan, Ting
    Pan, W. G.
    RENEWABLE ENERGY, 2024, 232
  • [33] Carbon Dioxide Capture from Compressed Air Energy Storage System
    Zeynalian, Mirhadi
    Hajialirezaei, Amir Hossein
    Razmi, Amir Reza
    Torabi, M.
    APPLIED THERMAL ENGINEERING, 2020, 178
  • [34] Bi-Level Optimal Scheduling Strategy of Integrated Energy System Considering Adiabatic Compressed Air Energy Storage and Integrated Demand Response
    Men, Jiakai
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2023, 19 (01) : 97 - 111
  • [35] Energy and exergy analysis of a micro-compressed air energy storage and air cycle heating and cooling system
    Kim, Y. M.
    Favrat, D.
    ENERGY, 2010, 35 (01) : 213 - 220
  • [36] Bi-Level Optimal Scheduling Strategy of Integrated Energy System Considering Adiabatic Compressed Air Energy Storage and Integrated Demand Response
    Jiakai Men
    Journal of Electrical Engineering & Technology, 2024, 19 : 97 - 111
  • [37] Multi-objective Capacity Optimization of Integrated Energy System with Compressed Air Energy Storage
    Wang, Haiyang
    Li, Ke
    Zhang, Chenghui
    Ma, Xin
    PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 484 - 489
  • [38] Impact of Carbon Capture (Storage) and Carbon Tax on Economic Dispatch of an Integrated Energy System
    Tan, Zhizhou
    Lin, Boqiang
    JOURNAL OF GLOBAL INFORMATION MANAGEMENT, 2023, 31 (01) : 1 - 21
  • [39] Low-Carbon Optimal Operation Strategy of Integrated Energy System Considering Generalized Energy Storage and LCA Carbon Emission
    Sun Y.
    Gu J.
    Zheng S.
    Li X.
    Lu C.
    Liu W.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2024, 58 (05): : 647 - 658
  • [40] Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES)
    Abbaspour, M.
    Satkin, M.
    Mohammadi-Ivatloo, B.
    Lotfi, F. Hoseinzadeh
    Noorollahi, Y.
    RENEWABLE ENERGY, 2013, 51 : 53 - 59