Geometric Limits and Length Bounds on Curves

被引:0
|
作者
Soma, Teruhiko [1 ]
机构
[1] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo 1920397, Japan
关键词
hyperbolic; 3-manifolds; Ending Lamination Conjecture; curve graphs; COMPLEX;
D O I
10.3836/tjm/1313074451
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present the new proof of the Length Upper Bounds Theorem on curves in surfaces, which is crucial in the proof of Ending Lamination Conjecture by Minsky et al. Our proof is based on arguments in Bowditch [Bow2] but we use geometric limit arguments fully.
引用
收藏
页码:203 / 219
页数:17
相关论文
共 50 条
  • [11] Geometric limits in dynamics
    RENORMALIZATION AND 3-MANIFOLDS WHICH FIBER OVER THE CIRCLE, 1996, (142): : 151 - 173
  • [12] CURVES OF PLASTICITY LIMITS
    BERGSTROMS, Y
    JKA-JERNKONTORETS ANNALER, 1982, 166 (04): : 20 - &
  • [13] Improved Bounds for Geometric Permutations
    Rubin, Natan
    Kaplan, Haim
    Sharir, Micha
    2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 355 - 364
  • [14] GEOMETRIC BOUNDS ON THE RELATIVE INDEX
    Epstein, Charles L.
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2002, 1 (03) : 441 - 465
  • [15] Bounds for the genus of space curves
    Beorchia, V
    MATHEMATISCHE NACHRICHTEN, 1997, 184 : 59 - 71
  • [16] IMPROVED BOUNDS FOR GEOMETRIC PERMUTATIONS
    Rubin, Natan
    Kaplan, Haim
    Sharir, Micha
    SIAM JOURNAL ON COMPUTING, 2012, 41 (02) : 367 - 390
  • [17] Geometric bounds for generalization in boosting
    Mannor, S
    Meir, R
    COMPUTATIONAL LEARNING THEORY, PROCEEDINGS, 2001, 2111 : 461 - 472
  • [18] Bounds for curves in abelian varieties
    Noguchi, J
    Winkelmann, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2004, 572 : 27 - 47
  • [19] Weil bounds for singular curves
    Bach, E
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1996, 7 (04) : 289 - 298
  • [20] A note on geometric bounds for eigenvalues
    Walker, Stephen G.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 457 : 400 - 407