From local adsorption stresses to chiral surfaces:: (R,R)-tartaric acid on Ni(110)

被引:180
作者
Humblot, V
Haq, S
Muryn, C
Hofer, WA
Raval, R [1 ]
机构
[1] Univ Liverpool, Leverhulme Ctr Innovat Catalysis, Liverpool L69 7ZD, Merseyside, England
[2] Univ Liverpool, Surface Sci Res Ctr, Dept Chem, Liverpool L69 7ZD, Merseyside, England
[3] UCL, Dept Phys & Astron, London WC1E 6BT, England
关键词
D O I
10.1021/ja012021e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The chiral molecule (R,R)-tartaric acid adsorbed on nickel surfaces creates highly enantioselective heterogeneous catalysts, but the nature of chiral modification remains unknown. Here, we report on the behavior of this chiral molecule with a defined Ni(110) surface. A combination of reflection absorption infrared spectroscopy, scanning tunneling microscopy, and periodic density functional theory calculations reveals a new mode of chiral induction. At room temperatures and low coverages, (R,R)-tartaric acid is adsorbed in its bitartrate form with two-point bonding to the surface via both carboxylate groups. The molecule is preferentially located above the 4-fold hollow site with each carboxylate functionality adsorbed at the short bridge site via 0 atoms placed above adjacent Ni atoms. However, repulsive interactions between the chiral OH groups of the molecule and the metal atoms lead to severely strained adsorption on the bulk-truncation Ni(l 10) surface. As a result, the most stable adsorption structure is one in which this adsorption-induced stress is alleviated by significant relaxation of surface metal atoms so that a long distance of 7.47 A between pairs of Ni atoms can be accommodated at the surface. Interestingly, this leads the bonding Ni atoms to describe a chiral footprint at the surface for which all local mirror symmetry planes are destroyed. Calculations show only one chiral footprint to be favored by the (R,R)-tartaric acid, with the mirror adsorption site being unstable by 6 kJ mol(-1). This energy difference is sufficient to enable the same local chiral reconstruction and motif to be sustained over 90% of the system, leading to an overall highly chiral metal surface.
引用
收藏
页码:503 / 510
页数:8
相关论文
共 50 条