Optimization of ANN input parameters used in electric field level prediction model

被引:0
|
作者
Mladenovic, Jelena [1 ]
Neskovic, Nataga [1 ]
Neskovic, Aleksandar [1 ]
机构
[1] Elektrotehn Fak Beogradu, Bulevar Kralja Aleksandra 73, Belgrade 11120, Serbia
关键词
artificial neural networks; electric field level prediction; microcells; optimization;
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
This paper presents optimization of existing ANN (Artificial Neural Network) electric field level prediction model in a microcellular environment. Optimization is achieved using feedforward neural networks. The analysis showed that choosing optimal input parameters gives a better quality prediction than when considering all input parameters used by existing model. Optimization has been achieved in terms of increasing the accuracy of prediction and reducing the complexity of the model itself.
引用
收藏
页码:145 / 148
页数:4
相关论文
共 50 条
  • [1] ANN Based Execution Time Prediction Model and Assessment of Input Parameters through ISM
    Shukla, Anju
    Kumar, Shishir
    Singh, Harikesh
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2020, 17 (05) : 683 - 691
  • [2] Prediction of maximum pressure of journal bearing using ANN with multiple input parameters
    Kumar, Sunil
    Kumar, Vijay
    Singh, Anoop Kumar
    AUSTRALIAN JOURNAL OF MECHANICAL ENGINEERING, 2022, 20 (04) : 1069 - 1078
  • [3] MLP-ANN-Based Execution Time Prediction Model and Assessment of Input Parameters Through Structural Modeling
    Shukla, Anju
    Kumar, Shishir
    Singh, Harikesh
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2021, 91 (03) : 577 - 585
  • [4] MLP-ANN-Based Execution Time Prediction Model and Assessment of Input Parameters Through Structural Modeling
    Anju Shukla
    Shishir Kumar
    Harikesh Singh
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2021, 91 : 577 - 585
  • [5] Enhancing ANN model perfomance to be used for solar radiation prediction
    Halima, Djeldjeli
    Camel, Tanougast
    Djelloul, Benatiallah
    2024 1ST INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND ARTIFICIAL INTELLIGENCE, SESAI 2024, 2024, : 69 - 74
  • [6] ANN Based Sediment Prediction Model Utilizing Different Input Scenarios
    Haitham Abdulmohsin Afan
    Ahmed El-Shafie
    Zaher Mundher Yaseen
    Mohammed Majeed Hameed
    Wan Hanna Melini Wan Mohtar
    Aini Hussain
    Water Resources Management, 2015, 29 : 1231 - 1245
  • [7] ANN Based Sediment Prediction Model Utilizing Different Input Scenarios
    Afan, Haitham Abdulmohsin
    El-Shafie, Ahmed
    Yaseen, Zaher Mundher
    Hameed, Mohammed Majeed
    Mohtar, Wan Hanna Melini Wan
    Hussain, Aini
    WATER RESOURCES MANAGEMENT, 2015, 29 (04) : 1231 - 1245
  • [8] Indoor electric field level prediction model based on the artificial neural networks
    Neskovic, A
    Neskovic, N
    Paunovic, D
    IEEE COMMUNICATIONS LETTERS, 2000, 4 (06) : 190 - 192
  • [9] A COP Prediction Model of Hybrid Geothermal Heat Pump Systems based on ANN and SVM with Hyper-Parameters Optimization
    Shin, Jihyun
    Lee, Jinhyun
    Cho, Younghum
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [10] SYSTEMS OPTIMIZATION OF THE PARAMETERS OF A PREDICTION MODEL.
    Svetal'skiy, B.K.
    Stepashko, V.S.
    Soviet journal of automation and information sciences, 1986, 19 (06): : 72 - 74