Observer-Based Adaptive Fuzzy Tracking Control of MIMO Stochastic Nonlinear Systems With Unknown Control Directions and Unknown Dead Zones

被引:453
作者
Li, Yongming [1 ]
Tong, Shaocheng [1 ]
Li, Tieshan [2 ]
机构
[1] Liaoning Univ Technol, Dept Basic Math, Jinzhou 121001, Peoples R China
[2] Dalian Maritime Univ, Nav Coll, Dalian 116026, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive output-feedback tracking control; fuzzy logic systems (FLS); multi-input multi-output (MIMO) stochastic nonlinear systems; unknown control directions; unknown dead-zones; OUTPUT-FEEDBACK CONTROL; DYNAMIC SURFACE CONTROL; BACKSTEPPING CONTROL; NEURAL-CONTROL; DELAY SYSTEMS; DESIGN;
D O I
10.1109/TFUZZ.2014.2348017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, an adaptive fuzzy backstepping output-feedback tracking control approach is proposed for a class of multi-input and multi-output (MIMO) stochastic nonlinear systems. The MIMO stochastic nonlinear systems under study are assumed to possess unstructured uncertainties, unknown dead-zones, and unknown control directions. By using a linear state transformation, the unknown control coefficients and the unknown slopes characteristic of the dead-zones are lumped together, and the original system is transformed to a new system on which the control design becomes feasible. Fuzzy logic systems are used to approximate the unstructured uncertainties, and a fuzzy state observer is designed to estimate the unmeasured states. By introducing a special Nussbaum gain function into the backstepping control design, a stable adaptive fuzzy output-feedback tracking control scheme is developed. The main features of the proposed adaptive control approach are that it can guarantee the stability of the closed-loop system, and the tracking errors converge to a small neighborhood of zero. Moreover, it can solve the problems of unknown control direction, unknown dead-zone, and unmeasured states simultaneously. Two simulation examples are provided to show the effectiveness of the proposed approach.
引用
收藏
页码:1228 / 1241
页数:14
相关论文
共 45 条
[1]   Novel adaptive neural control design for nonlinear MIMO time-delay systems [J].
Chen, Bing ;
Liu, Xiaoping ;
Liu, Kefu ;
Lin, Chong .
AUTOMATICA, 2009, 45 (06) :1554-1560
[2]   Robust Adaptive Neural Network Control for a Class of Uncertain MIMO Nonlinear Systems With Input Nonlinearities [J].
Chen, Mou ;
Ge, Shuzhi Sam ;
How, Bernard Voon Ee .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (05) :796-812
[3]   Output-feedback adaptive dynamic surface control of stochastic non-linear systems using neural network [J].
Chen, W. S. ;
Jiao, L. C. ;
Du, Z. B. .
IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (12) :3012-3021
[4]   Adaptive NN Backstepping Output-Feedback Control for Stochastic Nonlinear Strict-Feedback Systems With Time-Varying Delays [J].
Chen, Weisheng ;
Jiao, Licheng ;
Li, Jing ;
Li, Ruihong .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (03) :939-950
[5]   Globally stable adaptive backstepping fuzzy control for output-feedback systems with unknown high-frequency gain sign [J].
Chen, Weisheng ;
Zhang, Zhengqiang .
FUZZY SETS AND SYSTEMS, 2010, 161 (06) :821-836
[6]   Output-feedback stochastic nonlinear stabilization [J].
Deng, H ;
Krstic, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (02) :328-333
[7]   A flat-zone modification for robust adaptive control of nonlinear output feedback systems with unknown high-frequency gains [J].
Ding, ZT ;
Ye, XD .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (02) :358-363
[8]   Adaptive Fuzzy Output-Feedback Controller Design for Nonlinear Time-Delay Systems With Unknown Control Direction [J].
Hua, Chang-Chun ;
Wang, Qing-Guo ;
Guan, Xin-Ping .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (02) :363-374
[9]   Adaptive output-feedback tracking of stochastic nonlinear systems [J].
Ji, HB ;
Xi, HS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (02) :355-360
[10]   Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach [J].
Li, Hongyi ;
Gao, Huijun ;
Shi, Peng ;
Zhao, Xudong .
AUTOMATICA, 2014, 50 (07) :1825-1834