Strategies for polyhedral surface decomposition: An experimental study

被引:68
作者
Chazelle, B
Dobkin, DP
Shouraboura, N
Tal, A
机构
[1] PRINCETON UNIV,DEPT COMP SCI,PRINCETON,NJ 08544
[2] PRINCETON UNIV,PROGRAM APPL & COMPUTAT MATH,PRINCETON,NJ 08544
[3] WEIZMANN INST SCI,DEPT COMP SCI,IL-76100 REHOVOT,ISRAEL
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 1997年 / 7卷 / 5-6期
基金
美国国家科学基金会;
关键词
NP-completeness; 3-SAT; convexity; surface decomposition; flooding heuristics;
D O I
10.1016/S0925-7721(96)00024-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper addresses the problem of decomposing a complex polyhedral surface into a small number of ''convex'' patches (i.e., boundary parts of convex polyhedra). The corresponding optimization problem is shown to be NP-complete and an experimental search for good heuristics is undertaken. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:327 / 342
页数:16
相关论文
共 21 条
[1]  
Amenta N., 1995, Proceedings of the Eleventh Annual Symposium on Computational Geometry, pC12
[2]  
[Anonymous], P 9 ANN S COMP GEOM
[3]  
[Anonymous], 1987, ART GALLERY THEOREMS
[4]   CASTLES IN THE AIR REVISITED [J].
ARONOV, B ;
SHARIR, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 12 (02) :119-150
[5]   TRIANGLES IN SPACE OR BUILDING (AND ANALYZING) CASTLES IN THE AIR [J].
ARONOV, B ;
SHARIR, M .
COMBINATORICA, 1990, 10 (02) :137-173
[6]   CONVEX DECOMPOSITION OF POLYHEDRA AND ROBUSTNESS [J].
BAJAJ, CL ;
DEY, TK .
SIAM JOURNAL ON COMPUTING, 1992, 21 (02) :339-364
[7]  
BERN M, 1992, WORLD SCI SERIES COM, P23
[8]  
BERN M, 1990, 31 ANN S FDN COMP SC, P231
[9]   CONVEX PARTITIONS OF POLYHEDRA - A LOWER BOUND AND WORST-CASE OPTIMAL ALGORITHM [J].
CHAZELLE, B .
SIAM JOURNAL ON COMPUTING, 1984, 13 (03) :488-507
[10]   TRIANGULATING A NONCONVEX POLYTOPE [J].
CHAZELLE, B ;
PALIOS, L .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (05) :505-526