Comment on "Detecting non-Abelian geometric phases with three-level Λ systems"

被引:0
|
作者
Ericsson, Marie [1 ]
Sjoqvist, Erik [1 ,2 ]
机构
[1] Uppsala Univ, Dept Quantum Chem, SE-75120 Uppsala, Sweden
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
来源
PHYSICAL REVIEW A | 2013年 / 87卷 / 03期
关键词
D O I
10.1103/PhysRevA.87.036101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In their recent paper, Yan-Xiong Du et al. [Phys. Rev. A 84, 034103 (2011)] claim to have found a non-Abelian adiabatic geometric phase associated with the energy eigenstates of a large-detuned three-level Lambda system. They further propose a test to detect the noncommutative feature of this geometric phase. On the contrary, we show that the non-Abelian geometric phase picked up by the energy eigenstates of a Lambda system is trivial in the adiabatic approximation, while, in the exact treatment of the time evolution, this phase is very small and cannot be separated from the non-Abelian dynamical phase acquired along the path in parameter space. DOI: 10.1103/PhysRevA.87.036101
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Detecting non-Abelian geometric phases with three-level Λ systems
    Du, Yan-Xiong
    Xue, Zheng-Yuan
    Zhang, Xin-Ding
    Yan, Hui
    PHYSICAL REVIEW A, 2011, 84 (03):
  • [2] Detecting non-Abelian geometric phases with superconducting nanocircuits
    Feng, Zhi-Bo
    Zhang, Yuan-Min
    Wang, Guo-Zhi
    Han, Hongpei
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 41 (10) : 1859 - 1863
  • [3] Detecting unambiguously non-Abelian geometric phases with trapped ions
    Zhang, Xin-Ding
    Wang, Z. D.
    Hu, Liang-Bin
    Zhang, Zhi-Ming
    Zhu, Shi-Liang
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [4] Non-Abelian geometric phases in periodically driven systems
    Novicenko, Viktor
    Juzeliunas, Gediminas
    PHYSICAL REVIEW A, 2019, 100 (01)
  • [5] Exact Abelian and Non-Abelian Geometric Phases
    Soo, Chopin
    Lin, Huei-Chen
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2014, 8 : 85 - 101
  • [6] Abelian and non-Abelian geometric phases in adiabatic open quantum systems
    Sarandy, M. S.
    Lidar, D. A.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [7] Detecting non-Abelian geometric phase in circuit QED
    Man-Lv Peng
    Jian Zhou
    Zheng-Yuan Xue
    Quantum Information Processing, 2013, 12 : 2739 - 2747
  • [8] Detecting non-Abelian geometric phase in circuit QED
    Peng, Man-Lv
    Zhou, Jian
    Xue, Zheng-Yuan
    QUANTUM INFORMATION PROCESSING, 2013, 12 (08) : 2739 - 2747
  • [9] Particle-number threshold for non-Abelian geometric phases
    Pinske, Julien
    Burgtorf, Vincent
    Scheel, Stefan
    PHYSICAL REVIEW A, 2023, 107 (06)
  • [10] Non-Abelian generalization of off-diagonal geometric phases
    Kult, D.
    Aberg, J.
    Sjoqvist, E.
    EPL, 2007, 78 (06)