Energy estimates for two-dimensional space-Riesz fractional wave equation

被引:2
作者
Chen, Minghua [1 ]
Yu, Wenshan [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Gansu, Peoples R China
关键词
Riesz fractional wave equation; Nonlocal wave equation; Priori error estimates; Energy method; Numerical stability and convergence; NUMERICAL-SOLUTION; DIFFERENCE SCHEME; DIFFUSION; APPROXIMATION;
D O I
10.1007/s11075-018-0514-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fractional wave equation governs the propagation of mechanical diffusive waves in viscoelastic media which exhibits a power-law creep, and consequently provided a physical interpretation of this equation in the framework of dynamic viscoelasticity. In this paper, we first use the energy method to estimate the one-dimensional space-Riesz fractional wave equation. The stiff matrices are proved to be commutative for two-dimensional case, which ensures to carry out of the priori error estimates and the energy method. Then, the unconditional stability and convergence with the global truncation error O(2+h2) are theoretically proved with the constant coefficients and numerically verified.
引用
收藏
页码:989 / 1014
页数:26
相关论文
共 36 条
  • [11] Matrix method for numerical solution of space-time fractional diffusion-wave equations with three space variables
    Garg M.
    Manohar P.
    [J]. Afrika Matematika, 2014, 25 (1) : 161 - 181
  • [12] A high-order difference scheme for the fractional sub-diffusion equation
    Hao, Zhao-peng
    Lin, Guang
    Sun, Zhi-zhong
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (02) : 405 - 426
  • [13] Hu J. W., 1999, NUMERICAL METHODS DI
  • [14] A High-Order Compact Finite Difference Scheme for the Fractional Sub-diffusion Equation
    Ji, Cui-cui
    Sun, Zhi-zhong
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2015, 64 (03) : 959 - 985
  • [15] Laub Alan J, 2005, Matrix analysis for scientists and engineers, V91
  • [16] Numerical methods for solving the multi-term time-fractional wave-diffusion equation
    Liu, Fawang
    Meerschaert, Mark M.
    McGough, Robert J.
    Zhuang, Pinghui
    Liu, Qingxia
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (01) : 9 - 25
  • [17] DISCRETIZED FRACTIONAL CALCULUS
    LUBICH, C
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (03) : 704 - 719
  • [18] Mainardi F, 1997, FRACTAL CALCULUS SOM
  • [19] Mainardi F., 2001, Fract. Calc. Appl. Anal., V4, P153
  • [20] NUMERICAL-SOLUTION OF AN EVOLUTION EQUATION WITH A POSITIVE-TYPE MEMORY TERM
    MCLEAN, W
    THOMEE, V
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1993, 35 : 23 - 70