Energy estimates for two-dimensional space-Riesz fractional wave equation

被引:2
作者
Chen, Minghua [1 ]
Yu, Wenshan [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Gansu, Peoples R China
关键词
Riesz fractional wave equation; Nonlocal wave equation; Priori error estimates; Energy method; Numerical stability and convergence; NUMERICAL-SOLUTION; DIFFERENCE SCHEME; DIFFUSION; APPROXIMATION;
D O I
10.1007/s11075-018-0514-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fractional wave equation governs the propagation of mechanical diffusive waves in viscoelastic media which exhibits a power-law creep, and consequently provided a physical interpretation of this equation in the framework of dynamic viscoelasticity. In this paper, we first use the energy method to estimate the one-dimensional space-Riesz fractional wave equation. The stiff matrices are proved to be commutative for two-dimensional case, which ensures to carry out of the priori error estimates and the energy method. Then, the unconditional stability and convergence with the global truncation error O(2+h2) are theoretically proved with the constant coefficients and numerically verified.
引用
收藏
页码:989 / 1014
页数:26
相关论文
共 36 条
  • [1] A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation
    Bhrawy, A. H.
    Zaky, M. A.
    Van Gorder, R. A.
    [J]. NUMERICAL ALGORITHMS, 2016, 71 (01) : 151 - 180
  • [2] FINITE-ELEMENT APPROXIMATION OF A PARABOLIC INTEGRODIFFERENTIAL EQUATION WITH A WEAKLY SINGULAR KERNEL
    CHEN, C
    THOMEE, V
    WAHLBIN, LB
    [J]. MATHEMATICS OF COMPUTATION, 1992, 58 (198) : 587 - 602
  • [3] High Order Algorithm for the Time-Tempered Fractional Feynman-Kac Equation
    Chen, Minghua
    Deng, Weihua
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (02) : 867 - 887
  • [4] CONVERGENCE ANALYSIS OF A MULTIGRID METHOD FOR A NONLOCAL MODEL
    Chen, Minghua
    Deng, Weihua
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2017, 38 (03) : 869 - 890
  • [5] FOURTH ORDER ACCURATE SCHEME FOR THE SPACE FRACTIONAL DIFFUSION EQUATIONS
    Chen, Minghua
    Deng, Weihua
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (03) : 1418 - 1438
  • [6] Convolution quadrature time discretization of fractional diffusion-wave equations
    Cuesta, E
    Lubich, C
    Palencia, C
    [J]. MATHEMATICS OF COMPUTATION, 2006, 75 (254) : 673 - 696
  • [7] A weighted numerical algorithm for two and three dimensional two-sided space fractional wave equations
    Deng, Kaiying
    Chen, Minghua
    Sun, Tieli
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 264 - 273
  • [8] ON THE NUMERICAL INTEGRATION OF D2U-DX2+D2U-DY2=DU-D+ IMPLICIT METHODS
    DOUGLAS, J
    [J]. JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1955, 3 (01): : 42 - 65
  • [9] Douglas J., 1964, Numer. Math, V6, P428, DOI DOI 10.1007/BF01386093
  • [10] Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints
    Du, Qiang
    Gunzburger, Max
    Lehoucq, R. B.
    Zhou, Kun
    [J]. SIAM REVIEW, 2012, 54 (04) : 667 - 696