Low frequency driven electromagnetic energy harvester for self-powered system

被引:35
|
作者
Lee, Byung-Chul [1 ]
Rahman, Md Ataur [1 ]
Hyun, Seung-Ho [1 ]
Chung, Gwiy-Sang [1 ]
机构
[1] Univ Ulsan, Sch Elect Engn, Ulsan 680749, South Korea
关键词
GENERATOR; FABRICATION; DESIGN;
D O I
10.1088/0964-1726/21/12/125024
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper describes a low frequency driven electromagnetic energy harvester (EMEH) for a self-powered system. The EMEH consists of two thin flame resistant (FR-4) springs, NdFeB permanent magnets, and a copper coil. The FR-4 spring was fabricated by a desk computer numerical control (CNC) 3D modeling machine. The two FR-4 springs were used at the top and bottom sides of the device to reduce the stress on the springs and to achieve linear movement of the moving magnet. The finite element method (FEM) is used to investigate the mechanical properties of the system. The proposed EMEH can generate up to 1.52 mW at a resonance frequency of 16 Hz with an acceleration of 0.2 g (g = 9.8 m s(-2)) and a superior normalized power density (NPD) of 1.07 mW cm(-3) g(2). The EMEH attached to the engine of an automobile produced 2.4 mW of power, showing the viability of practical applications.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Simulation and testing of a micro electromagnetic energy harvester for self-powered system
    Lei, Yiming
    Wen, Zhiyu
    Chen, Li
    AIP ADVANCES, 2014, 4 (03)
  • [2] A Self-Powered Electronic Interface for Electromagnetic Energy Harvester
    Dallago, Enrico
    Danioni, Alberto
    Marchesi, Marco
    Nucita, Valeria
    Venchi, Giuseppe
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2011, 26 (11) : 3174 - 3182
  • [3] Self-powered wireless sensor system for water monitoring based on low-frequency electromagnetic-pendulum energy harvester
    Li, Mingxue
    Zhang, Yufeng
    Li, Kexin
    Zhang, Yiwen
    Xu, Kaixuan
    Liu, Xiaoqiang
    Zhong, Shaoxuan
    Cao, Jiamu
    ENERGY, 2022, 251
  • [4] SELF-POWERED INTERFACE EXTERNAL CIRCUIT FOR LOW-FREQUENCY ACOUSTIC ENERGY HARVESTER
    Li, Bin
    You, Jeong Ho
    Kim, Yong-Joe
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 6A, 2014,
  • [5] A multiband radio-frequency energy harvester for self-powered biosensor
    Daoud, Maissa
    Mnif, Hassene
    Ghorbel, Mohamed
    HELIYON, 2023, 9 (09)
  • [6] An Efficient Electromagnetic Wind Energy Harvester for Self-Powered Wireless Sensor Node
    Fang, Yan
    Li, Yunfei
    Huang, Manjuan
    Liu, Huicong
    Chen, Tao
    Tang, Gang
    Sun, Lining
    2019 19TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS), 2020,
  • [7] Self-Powered Piezoelectric Energy Harvester for Bicycle
    Vasic, Dejan
    Chen, Yu-Yin
    Costa, Francois
    Vasic, Dejan
    39TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2013), 2013, : 1856 - 1861
  • [8] Self-powered SSHI for Electret Energy Harvester
    Liu, Yiran
    Suzuki, Yuji
    17TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2017), 2018, 1052
  • [9] Self-powered piezoelectric energy harvester for bicycle
    Dejan Vasic
    Yu-Yin Chen
    François Costa
    Journal of Mechanical Science and Technology, 2014, 28 : 2501 - 2510
  • [10] Self-powered piezoelectric energy harvester for bicycle
    Vasic, Dejan
    Chen, Yu-Yin
    Costa, Francois
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2014, 28 (07) : 2501 - 2510