PARAMETRIC SPECIFICATION TEST FOR NONLINEAR AUTOREGRESSIVE MODELS

被引:3
|
作者
Kim, Kun Ho [1 ]
Zhang, Ting [2 ]
Wu, Wei Biao [3 ]
机构
[1] Hanyang Univ, Seoul, South Korea
[2] Boston Univ, Boston, MA 02215 USA
[3] Univ Chicago, Chicago, IL 60637 USA
关键词
CONSISTENT DENSITY ESTIMATORS; CONTINUOUS-TIME MODELS; TERM STRUCTURE; DIFFUSION-PROCESSES; LIMIT-THEOREMS; ARCH(1) ERRORS; INTEREST-RATES; SERIES; INFERENCE; VARIABLES;
D O I
10.1017/S0266466614000681
中图分类号
F [经济];
学科分类号
02 ;
摘要
The paper considers testing parametric assumptions on the conditional mean and variance functions for nonlinear autoregressive models. To this end, we compare the kernel density estimate of the marginal density of the process with a convolution-type density estimate. It is shown that, interestingly, the latter estimate has a parametric (root n) rate of convergence, thus substantially improving the classical kernel density estimates whose rates of convergence are much inferior. Our results are confirmed by a simulation study for threshold autoregressive processes and autoregressive conditional heteroskedastic processes.
引用
收藏
页码:1078 / 1101
页数:24
相关论文
共 50 条
  • [21] Threshold quantile autoregressive models
    Galvao, Antonio F., Jr.
    Montes-Rojas, Gabriel
    Olmo, Jose
    JOURNAL OF TIME SERIES ANALYSIS, 2011, 32 (03) : 253 - 267
  • [22] On nonergodicity for nonparametric autoregressive models
    Tang, Mingtian
    Wang, Yunyan
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [23] Bayesian Mixtures of Autoregressive Models
    Wood, Sally
    Rosen, Ori
    Kohn, Robert
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (01) : 174 - 195
  • [24] Copula parameter change test for nonlinear AR models with nonlinear GARCH errors
    Lee, Sangyeol
    Kim, Byungsoo
    STATISTICAL METHODOLOGY, 2015, 25 : 1 - 22
  • [25] Skewness-based test diagnosis of technical inefficiency in spatial autoregressive stochastic frontier models
    Deng, Ming-Yu
    Kutlu, Levent
    Wang, Mingxi
    JOURNAL OF PRODUCTIVITY ANALYSIS, 2024, 62 (01) : 53 - 70
  • [26] Linear, nonlinear, parametric and nonparametric regression models for nonstationary flood frequency analysis
    Chen, Mengzhu
    Papadikis, Konstantinos
    Jun, Changhyun
    Macdonald, Neil
    JOURNAL OF HYDROLOGY, 2023, 616
  • [27] SEMI-PARAMETRIC ESTIMATION OF LINEAR COINTEGRATING MODELS WITH NONLINEAR CONTEMPORANEOUS ENDOGENEITY
    Sun, Yiguo
    JOURNAL OF TIME SERIES ANALYSIS, 2014, 35 (05) : 437 - 461
  • [28] Information ratio test for model misspecification on parametric structures in stochastic diffusion models
    Zhang, Shulin
    Song, Peter X-K
    Shi, Daimin
    Zhou, Qian M.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (12) : 3975 - 3987
  • [29] A goodness-of-fit test for parametric models based on dependently truncated data
    Emura, Takeshi
    Konno, Yoshihiko
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (07) : 2237 - 2250
  • [30] GMM inference in spatial autoregressive models
    Taspinar, Suleyman
    Dogan, Osman
    Vijverberg, Wim P. M.
    ECONOMETRIC REVIEWS, 2018, 37 (09) : 931 - 954