Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations

被引:62
作者
Bolley, Francois [1 ]
Gentil, Ivan [2 ]
Guillin, Arnaud [3 ,4 ]
机构
[1] Univ Paris 09, CNRS, Umr 7534, CEREMADE, F-75016 Paris 16, France
[2] Univ Lyon 1, CNRS, Umr 5208, Inst Camille Jordan, F-69622 Villeurbanne, France
[3] Univ Blaise Pascal, Inst Univ France, F-63177 Clermont Ferrand, France
[4] Univ Blaise Pascal, Lab Math, CNRS, Umr 6620, F-63177 Clermont Ferrand, France
关键词
Diffusion equations; Wasserstein distance; Functional inequalities; Spectral gap; LONG-TIME ASYMPTOTICS; INEQUALITIES;
D O I
10.1016/j.jfa.2012.07.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe conditions on non-gradient drift diffusion Fokker-Planck equations for its solutions to converge to equilibrium with a uniform exponential rate in Wasserstein distance. This asymptotic behaviour is related to a functional inequality, which links the distance with its dissipation and ensures a spectral gap in Wasserstein distance. We give practical criteria for this inequality and compare it to classical ones. The key point is to quantify the contribution of the diffusion term to the rate of convergence, in any dimension, which to our knowledge is a novelty. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2430 / 2457
页数:28
相关论文
共 31 条
[21]  
Guillin A., 2009, INTEGER VALUED LEVY
[22]   Transportation-information inequalities for Markov processes [J].
Guillin, Arnaud ;
Leonard, Christian ;
Wu, Liming ;
Yao, Nian .
PROBABILITY THEORY AND RELATED FIELDS, 2009, 144 (3-4) :669-695
[23]  
Han B., 2012, COMMUNICATION
[24]   Long-time asymptotics of a multiscale model for polymeric fluid flows [J].
Jourdain, Benjamin ;
Le Bris, Claude ;
Lelievre, Tony ;
Otto, Felix .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 181 (01) :97-148
[25]   NONLINEAR DIFFUSION EQUATIONS WITH VARIABLE COEFFICIENTS AS GRADIENT FLOWS IN WASSERSTEIN SPACES [J].
Lisini, Stefano .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2009, 15 (03) :712-740
[26]   Contraction of general transportation costs along solutions to Fokker-Planck equations with monotone drifts [J].
Natile, Luca ;
Peletier, Mark A. ;
Savare, Giuseppe .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 95 (01) :18-35
[27]   Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality [J].
Otto, F ;
Villani, C .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 173 (02) :361-400
[28]   Comment on: "Hypercontractivity of Hamilton-Jacobi equations", by S. Bobkov, I. Gentil and M. Ledoux [J].
Otto, F ;
Villani, C .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07) :697-700
[29]  
Stroock D.W., 2008, CAMBRIDGE STUD ADV M, V112
[30]  
Villani C, 2009, GRUNDLEHR MATH WISS, V338, P5