Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations

被引:62
作者
Bolley, Francois [1 ]
Gentil, Ivan [2 ]
Guillin, Arnaud [3 ,4 ]
机构
[1] Univ Paris 09, CNRS, Umr 7534, CEREMADE, F-75016 Paris 16, France
[2] Univ Lyon 1, CNRS, Umr 5208, Inst Camille Jordan, F-69622 Villeurbanne, France
[3] Univ Blaise Pascal, Inst Univ France, F-63177 Clermont Ferrand, France
[4] Univ Blaise Pascal, Lab Math, CNRS, Umr 6620, F-63177 Clermont Ferrand, France
关键词
Diffusion equations; Wasserstein distance; Functional inequalities; Spectral gap; LONG-TIME ASYMPTOTICS; INEQUALITIES;
D O I
10.1016/j.jfa.2012.07.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe conditions on non-gradient drift diffusion Fokker-Planck equations for its solutions to converge to equilibrium with a uniform exponential rate in Wasserstein distance. This asymptotic behaviour is related to a functional inequality, which links the distance with its dissipation and ensures a spectral gap in Wasserstein distance. We give practical criteria for this inequality and compare it to classical ones. The key point is to quantify the contribution of the diffusion term to the rate of convergence, in any dimension, which to our knowledge is a novelty. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2430 / 2457
页数:28
相关论文
共 31 条
[11]  
Bolley F., 2012, INTEGER VALUED LEVY
[12]   Quantitative concentration inequalities for empirical measures on non-compact spaces [J].
Bolley, Francois ;
Guillin, Arnaud ;
Villani, Cedric .
PROBABILITY THEORY AND RELATED FIELDS, 2007, 137 (3-4) :541-593
[13]   TREND TO EQUILIBRIUM AND PARTICLE APPROXIMATION FOR A WEAKLY SELFCONSISTENT VLASOV-FOKKER-PLANCK EQUATION [J].
Bolley, Francois ;
Guillin, Arnaud ;
Malrieu, Florent .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (05) :867-884
[14]  
CAFFARELLI L. A., 1992, Journal of the American Mathematical Society, V5, P99, DOI [DOI 10.2307/2152752, 10.2307/2152752]
[15]  
Carrillo JA, 2007, RIV MAT UNIV PARMA, V6, P75
[16]   Strict contractivity of the 2-Wasserstein distance for the porous medium equation by mass-centering [J].
Carrillo, J. A. ;
Di Francesco, M. ;
Toscani, G. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (02) :353-363
[17]   Contractions in the 2-Wasserstein length space and thermalization of granular media [J].
Carrillo, JA ;
McCann, RJ ;
Villani, CD .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 179 (02) :217-263
[18]   On quadratic transportation cost inequalities [J].
Cattiaux, Patrick ;
Guillin, Arnaud .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (04) :342-361
[19]   Some applications of mass transport to Gaussian-type inequalities [J].
Cordero-Erausquin, D .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 161 (03) :257-269
[20]  
Eberle A., 2011, INTEGER VALUED LEVY