An eigensystem approach to Anderson localization

被引:13
作者
Elgart, Alexander [1 ]
Klein, Abel [2 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
Random Schrodinger operators; Anderson localization; Anderson model; Multiscale analysis; Level spacing; Hall's Marriage Theorem; MANY-BODY LOCALIZATION; LARGE DISORDER; SPECTRUM; PROOF; DIFFUSION; CRITERIA; ABSENCE; SYSTEM; MODEL;
D O I
10.1016/j.jfa.2016.09.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new approach for proving localization (pure point spectrum with exponentially decaying eigenfunctions, dynamical localization) for the Anderson model at high disorder. In contrast to the usual strategy, we do not study finite volume Green's functions. Instead, we perform a multiscale analysis based on finite volume eigensystems (eigenvalues and eigenfunctions). Information about eigensystems at a given scale is used to derive information about eigensystems at larger scales. This eigensystem multiscale analysis treats all energies of the finite volume operator at the same time, establishing level spacing and localization of eigenfunctions in a fixed box with high probability. A new feature is the labeling of the eigenvalues and eigenfunctions by the sites of the box. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:3465 / 3512
页数:48
相关论文
共 50 条
  • [21] Efficient Localization Bounds in a Continuous N-Particle Anderson Model with Long-Range Interaction
    Chulaevsky, Victor
    LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (04) : 509 - 533
  • [22] Tunable Anderson localization of dark states
    Brehm, Jan David
    Popperl, Paul
    Mirlin, Alexander D.
    Shnirman, Alexander
    Stehli, Alexander
    Rotzinger, Hannes
    Ustinov, Alexey, V
    PHYSICAL REVIEW B, 2021, 104 (17)
  • [23] Anderson Localization for Periodically Driven Systems
    Ducatez, Raphael
    Huveneers, Francois
    ANNALES HENRI POINCARE, 2017, 18 (07): : 2415 - 2446
  • [24] Higher-order localization landscape theory of Anderson localization
    Skipetrov, Sergey E.
    PHYSICAL REVIEW B, 2024, 110 (21)
  • [25] Rise and Fall of Anderson Localization by Lattice Vibrations: A Time-Dependent Machine Learning Approach
    Zimmermann, Yoel
    Keski-Rahkonen, Joonas
    Graf, Anton M.
    Heller, Eric J.
    ENTROPY, 2024, 26 (07)
  • [26] Seeing Anderson localization
    Hilke, M.
    PHYSICAL REVIEW A, 2009, 80 (06):
  • [27] Anderson Localization or Nonlinear Waves: A Matter of Probability
    Ivanchenko, M. V.
    Laptyeva, T. V.
    Flach, S.
    PHYSICAL REVIEW LETTERS, 2011, 107 (24)
  • [28] On fluctuations and localization length for the Anderson model on a strip
    Binder, Ilia
    Goldstein, Michael
    Voda, Mircea
    JOURNAL OF SPECTRAL THEORY, 2015, 5 (01) : 193 - 225
  • [29] Critical dynamics at the Anderson localization mobility edge
    Mueller, Cord A.
    Delande, Dominique
    Shapiro, Boris
    PHYSICAL REVIEW A, 2016, 94 (03)
  • [30] Analytical description of the transverse Anderson localization of light
    Schirmacher, Walter
    Leonetti, Marco
    Ruocco, Giancarlo
    JOURNAL OF OPTICS, 2017, 19 (04)