Sparsity-promoting and edge-preserving maximum a posteriori estimators in non-parametric Bayesian inverse problems

被引:28
作者
Agapiou, Sergios [1 ]
Burger, Martin [2 ,3 ]
Dashti, Masoumeh [4 ]
Helin, Tapio [5 ]
机构
[1] Univ Cyprus, Dept Math & Stat, 1 Univ Ave, CY-2109 Nicosia, Cyprus
[2] Westfalische Wilhelms Univ Munster, Inst Computat & Appl Math, Munster, Germany
[3] Univ Munster, Cells Mot Cluster Excellence, Munster, Germany
[4] Univ Sussex, Dept Math, Brighton BN1 5DJ, E Sussex, England
[5] Univ Helsinki, Dept Math & Stat, Gustaf Hallstromin Katu 2b, FI-00014 Helsinki, Finland
基金
芬兰科学院; 欧洲研究理事会;
关键词
Bayesian inverse problems; Besov prior; MAP estimators; X-RAY TOMOGRAPHY; BESOV PRIORS; STATISTICAL INVERSION; RANDOM-VARIABLES; GAUSSIAN PRIORS; MAP ESTIMATORS; SPACE PRIORS; RECONSTRUCTION; REGULARIZATION; RADIOGRAPHS;
D O I
10.1088/1361-6420/aaacac
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the inverse problem of recovering an unknown functional parameter u in a separable Banach space, from a noisy observation vector y of its image through a known possibly non-linear map G. We adopt a Bayesian approach to the problem and consider Besov space priors (see Lassas et al (2009 Inverse Problems Imaging 3 87-122)), which are well-known for their edge-preserving and sparsity-promoting properties and have recently attracted wide attention especially in the medical imaging community. Our key result is to show that in this non-parametric setup the maximum a posteriori (MAP) estimates are characterized by the minimizers of a generalized Onsager-Machlup functional of the posterior. This is done independently for the so-called weak and strong MAP estimates, which as we show coincide in our context. In addition, we prove a form of weak consistency for the MAP estimators in the infinitely informative data limit. Our results are remarkable for two reasons: first, the prior distribution is non-Gaussian and does not meet the smoothness conditions required in previous research on non-parametric MAP estimates. Second, the result analytically justifies existing uses of the MAP estimate in finite but high dimensional discretizations of Bayesian inverse problems with the considered Besov priors.
引用
收藏
页数:37
相关论文
共 72 条
  • [41] Bayesian Recovery of the Initial Condition for the Heat Equation
    Knapik, B. T.
    Van der Vaart, A. W.
    Van Zanten, J. H.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (07) : 1294 - 1313
  • [42] BAYESIAN INVERSE PROBLEMS WITH GAUSSIAN PRIORS
    Knapik, B. T.
    van der Vaart, A. W.
    van Zanten, J. H.
    [J]. ANNALS OF STATISTICS, 2011, 39 (05) : 2626 - 2657
  • [43] Knapik B T, 2014, BERNOULLI, V24, P2091
  • [44] Sparsity-promoting Bayesian inversion
    Kolehmainen, V.
    Lassas, M.
    Niinimaki, K.
    Siltanen, S.
    [J]. INVERSE PROBLEMS, 2012, 28 (02)
  • [45] Statistical inversion for medical x-ray tomography with few radiographs:: II.: Application to dental radiology
    Kolehmainen, V
    Siltanen, S
    Järvenpää, S
    Kaipio, JP
    Koistinen, P
    Lassas, M
    Pirttilä, J
    Somersalo, E
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2003, 48 (10) : 1465 - 1490
  • [46] NON-GAUSSIAN STATISTICAL INVERSE PROBLEMS. PART I: POSTERIOR DISTRIBUTIONS
    Lasanen, Sari
    [J]. INVERSE PROBLEMS AND IMAGING, 2012, 6 (02) : 215 - 266
  • [47] Can one use total variation prior for edge-preserving Bayesian inversion?
    Lassas, M
    Siltanen, S
    [J]. INVERSE PROBLEMS, 2004, 20 (05) : 1537 - 1563
  • [48] DISCRETIZATION-INVARIANT BAYESIAN INVERSION AND BESOV SPACE PRIORS
    Lassas, Matti
    Saksman, Eero
    Siltanen, Samuli
    [J]. INVERSE PROBLEMS AND IMAGING, 2009, 3 (01) : 87 - 122
  • [49] LINEAR INVERSE PROBLEMS FOR GENERALIZED RANDOM-VARIABLES
    LEHTINEN, MS
    PAIVARINTA, L
    SOMERSALO, E
    [J]. INVERSE PROBLEMS, 1989, 5 (04) : 599 - 612
  • [50] Bayesian wavelet denoising: Besov priors and non-Gaussian noises
    Leporini, D
    Pesquet, JC
    [J]. SIGNAL PROCESSING, 2001, 81 (01) : 55 - 67