From multitude to singularity: An up-to-date overview of scRNA-seq data generation and analysis

被引:11
作者
Carangelo, Giulia [1 ]
Magi, Alberto [2 ]
Semeraro, Roberto [3 ]
机构
[1] Univ Florence, Dept Expt & Clin Biomed Sci Mario Serio, Florence, Italy
[2] Univ Florence, Dept Informat Engn, Florence, Italy
[3] Univ Florence, Dept Expt & Clin Med, Florence, Italy
关键词
single cell; RNA sequencing; transcriptomics; spatial transcriptomics; biomedical applications; technological evolution; CELL RNA-SEQ; GENOME-WIDE EXPRESSION; GENE-EXPRESSION; INTEGRATED ANALYSIS; SEQUENCING DATA; RECENT INSIGHTS; SINGLE; HETEROGENEITY; VISUALIZATION; IDENTIFIERS;
D O I
10.3389/fgene.2022.994069
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Single cell RNA sequencing (scRNA-seq) is today a common and powerful technology in biomedical research settings, allowing to profile the whole transcriptome of a very large number of individual cells and reveal the heterogeneity of complex clinical samples. Traditionally, cells have been classified by their morphology or by expression of certain proteins in functionally distinct settings. The advent of next generation sequencing (NGS) technologies paved the way for the detection and quantitative analysis of cellular content. In this context, transcriptome quantification techniques made their advent, starting from the bulk RNA sequencing, unable to dissect the heterogeneity of a sample, and moving to the first single cell techniques capable of analyzing a small number of cells (1-100), arriving at the current single cell techniques able to generate hundreds of thousands of cells. As experimental protocols have improved rapidly, computational workflows for processing the data have also been refined, opening up to novel methods capable of scaling computational times more favorably with the dataset size and making scRNA-seq much better suited for biomedical research. In this perspective, we will highlight the key technological and computational developments which have enabled the analysis of this growing data, making the scRNA-seq a handy tool in clinical applications.
引用
收藏
页数:16
相关论文
共 143 条
  • [91] BBKNN: fast batch alignment of single cell transcriptomes
    Polanski, Krzysztof
    Young, Matthew D.
    Miao, Zhichao
    Meyer, Kerstin B.
    Teichmann, Sarah A.
    Park, Jong-Eun
    [J]. BIOINFORMATICS, 2020, 36 (03) : 964 - 965
  • [92] Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
    Pollen, Alex A.
    Nowakowski, Tomasz J.
    Shuga, Joe
    Wang, Xiaohui
    Leyrat, Anne A.
    Lui, Jan H.
    Li, Nianzhen
    Szpankowski, Lukasz
    Fowler, Brian
    Chen, Peilin
    Ramalingam, Naveen
    Sun, Gang
    Thu, Myo
    Norris, Michael
    Lebofsky, Ronald
    Toppani, Dominique
    Kemp, Darnell W., II
    Wong, Michael
    Clerkson, Barry
    Jones, Brittnee N.
    Wu, Shiquan
    Knutsson, Lawrence
    Alvarado, Beatriz
    Wang, Jing
    Weaver, Lesley S.
    May, Andrew P.
    Jones, Robert C.
    Unger, Marc A.
    Kriegstein, Arnold R.
    West, Jay A. A.
    [J]. NATURE BIOTECHNOLOGY, 2014, 32 (10) : 1053 - +
  • [93] Decoding human fetal liver haematopoiesis
    Popescu, Dorin-Mirel
    Botting, Rachel A.
    Stephenson, Emily
    Green, Kile
    Webb, Simone
    Jardine, Laura
    Calderbank, Emily F.
    Polanski, Krzysztof
    Goh, Issac
    Efremova, Mirjana
    Acres, Meghan
    Maunder, Daniel
    Vegh, Peter
    Gitton, Yorick
    Park, Jong-Eun
    Vento-Tormo, Roser
    Miao, Zhichao
    Dixon, David
    Rowell, Rachel
    McDonald, David
    Fletcher, James
    Poyner, Elizabeth
    Reynolds, Gary
    Mather, Michael
    Moldovan, Corina
    Mamanova, Lira
    Greig, Frankie
    Young, Matthew D.
    Meyer, Kerstin B.
    Lisgo, Steven
    Bacardit, Jaume
    Fuller, Andrew
    Millar, Ben
    Innes, Barbara
    Lindsay, Susan
    Stubbington, Michael J. T.
    Kowalczyk, Monika S.
    Li, Bo
    Ashenberg, Orr
    Tabaka, Marcin
    Dionne, Danielle
    Tickle, Timothy L.
    Slyper, Michal
    Rozenblatt-Rosen, Orit
    Filby, Andrew
    Carey, Peter
    Villani, Alexandra-Chloe
    Roy, Anindita
    Regev, Aviv
    Chedotal, Alain
    [J]. NATURE, 2019, 574 (7778) : 365 - +
  • [94] Disentangling neural cell diversity using single-cell transcriptomics
    Poulin, Jean-Francois
    Tasic, Bosiljka
    Hjerling-Leffler, Jens
    Trimarchi, Jeffrey M.
    Awatramani, Rajeshwar
    [J]. NATURE NEUROSCIENCE, 2016, 19 (09) : 1131 - 1141
  • [95] Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer
    Puram, Sidharth V.
    Tirosh, Itay
    Parikh, Anuraag S.
    Patel, Anoop P.
    Yizhak, Keren
    Gillespie, Shawn
    Rodman, Christopher
    Luo, Christina L.
    Mroz, Edmund A.
    Emerick, Kevin S.
    Deschler, Daniel G.
    Varvares, Mark A.
    Mylvaganam, Ravi
    Rozenblatt-Rosen, Orit
    Rocco, James W.
    Faquin, William C.
    Lin, Derrick T.
    Regev, Aviv
    Bernstein, Bradley E.
    [J]. CELL, 2017, 171 (07) : 1611 - +
  • [96] Analysing high-throughput sequencing data in Python']Python with HTSeq 2.0
    Putri, Givanna H.
    Anders, Simon
    Pyl, Paul Theodor
    Pimanda, John E.
    Zanini, Fabio
    [J]. BIOINFORMATICS, 2022, 38 (10) : 2943 - 2945
  • [97] Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain
    Raj, Bushra
    Wagner, Daniel E.
    McKenna, Aaron
    Pandey, Shristi
    Klein, Allon M.
    Shendure, Jay
    Gagnon, James A.
    Schier, Alexander F.
    [J]. NATURE BIOTECHNOLOGY, 2018, 36 (05) : 442 - +
  • [98] Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells
    Ramskold, Daniel
    Luo, Shujun
    Wang, Yu-Chieh
    Li, Robin
    Deng, Qiaolin
    Faridani, Omid R.
    Daniels, Gregory A.
    Khrebtukova, Irina
    Loring, Jeanne F.
    Laurent, Louise C.
    Schroth, Gary P.
    Sandberg, Rickard
    [J]. NATURE BIOTECHNOLOGY, 2012, 30 (08) : 777 - 782
  • [99] The Human Cell Atlas
    Regev, Aviv
    Teichmann, Sarah A.
    Lander, Eric S.
    Amt, Ido
    Benoist, Christophe
    Birney, Ewen
    Bodenmiller, Bernd
    Campbell, Peter
    Carninci, Piero
    Clatworthy, Menna
    Clevers, Hans
    Deplancke, Bart
    Dunham, Ian
    Eberwine, James
    Elis, Roland
    Enard, Wolfgang
    Farmer, Andrew
    Fugger, Lars
    Gottgens, Berthold
    Hacohen, Nir
    Haniffa, Muzlifah
    Hemberg, Martin
    Kim, Seung
    Klenerman, Paul
    Kriegstein, Arnold
    Lein, E. D.
    Linnarsson, Sten
    Lundberg, Emma
    Lundeberg, Jaokim
    Majumder, Partha
    Marioni, John C.
    Merad, Miriam
    Mhlanga, Musa
    Nawijin, Martijn
    Netea, Mihai
    Nolan, Garry
    Pe'er, Dana
    Phillipakis, Anthony
    Ponting, Chris P.
    Quake, Stephen
    Reik, Wolf
    Rozenblatt-Rosen, Orit
    Sanes, Joshua
    Satija, Rahul
    Schumacher, Ton N.
    Shalek, Alex
    Shapiro, Ehud
    Sharma, Padmanee
    Shin, Jay W.
    Stegle, Oliver
    [J]. ELIFE, 2017, 6
  • [100] edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    Robinson, Mark D.
    McCarthy, Davis J.
    Smyth, Gordon K.
    [J]. BIOINFORMATICS, 2010, 26 (01) : 139 - 140