Importance of van der Waals interaction on structural, vibrational, and thermodynamic properties of NaCl

被引:16
|
作者
Marcondes, Michel L. [1 ,2 ]
Wentzcovitch, Renata M. [1 ,3 ]
Assali, Lucy V. C. [2 ]
机构
[1] Columbia Univ, Lamont Doherty Earth Observ, Dept Earth & Environm Sci, Palisades, NY 10964 USA
[2] Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, SP, Brazil
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
NaCl; Equation of state; van der Waals; High pressure; DENSITY-FUNCTIONAL-THEORY; EQUATION-OF-STATE; GENERALIZED GRADIENT APPROXIMATION; PHONON-DISPERSION RELATIONS; SODIUM-CHLORIDE; PRESSURE; TRANSITION; COMPLEXES; DIAMOND; KCL;
D O I
10.1016/j.ssc.2018.01.008
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Thermal equations of state (EOS) are essential in several scientific domains. However, experimental determination of EOS parameters may be limited at extreme conditions, therefore, ab initio calculations have become an important method to obtain them. Density functional theory (DFT) and its extensions with various degrees of approximations for the exchange and correlation (XC) energy is the method of choice, but large errors in the EOS parameters are still common. The alkali halides have been problematic from the onset of this field and the quest for appropriate DFT functionals for such ionic and relatively weakly bonded systems has remained an active topic of research. Here we use DFT + van der Waals functionals to calculate vibrational properties, thermal EOS, thermodynamic properties, and the B1 to B2 phase boundary of NaCl with high precision. Our results reveal a remarkable improvement over the performance of standard local density approximation and generalized gradient approximation functionals for all these properties and phase transition boundary, as well as great sensitivity of anharmonic effects on the choice of XC functional.
引用
收藏
页码:11 / 16
页数:6
相关论文
共 50 条
  • [31] The van der Waals interaction of hydrogen atoms
    Pauling, L
    Beach, JY
    PHYSICAL REVIEW, 1935, 47 (09): : 0686 - 0692
  • [32] A functional approach to the Van der Waals interaction
    Fosco, C. D.
    Hansen, G.
    ANNALS OF PHYSICS, 2023, 455
  • [33] The Coulomb interaction in van der Waals heterostructures
    Le Huang
    MianZeng Zhong
    HuiXiong Deng
    Bo Li
    ZhongMing Wei
    JingBo Li
    SuHuai Wei
    Science China Physics, Mechanics & Astronomy, 2019, 62
  • [34] The Coulomb interaction in van der Waals heterostructures
    Le Huang
    MianZeng Zhong
    HuiXiong Deng
    Bo Li
    ZhongMing Wei
    JingBo Li
    SuHuai Wei
    Science China(Physics,Mechanics & Astronomy), 2019, Mechanics & Astronomy)2019 (03) : 106 - 111
  • [35] Structural and vibrational properties of α-MoO3 from van der Waals corrected density functional theory calculations
    Ding, Hong
    Ray, Keith G.
    Ozolins, Vidvuds
    Asta, Mark
    PHYSICAL REVIEW B, 2012, 85 (01)
  • [36] High-pressure effects on structural, magnetic, and vibrational properties of van der Waals antiferromagnet MnPS3
    Kozlenko, D. P.
    Lis, O. N.
    Dang, N. T.
    Coak, M.
    Park, J. G.
    Lukin, E. V.
    Kichanov, S. E.
    Golosova, N. O.
    Zel, I. Yu.
    Savenko, B. N.
    PHYSICAL REVIEW MATERIALS, 2024, 8 (02)
  • [37] van der Waals density functional study of energetic, structural, and vibrational properties of small water clusters and ice Ih
    Kolb, Brian
    Thonhauser, T.
    PHYSICAL REVIEW B, 2011, 84 (04)
  • [38] Structural Features of van der Waals Complexes
    Batsanov, S. S.
    RUSSIAN JOURNAL OF COORDINATION CHEMISTRY, 1998, 24 (07) : 453 - 456
  • [39] Importance of van der Waals Interactions in Liquid Water
    Lin, I-Chun
    Seitsonen, Ari P.
    Coutinho-Neto, Mauricio D.
    Tavernelli, Ivano
    Rothlisberger, Ursula
    JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (04): : 1127 - 1131
  • [40] The effect of van der Waals force on the vibrational properties of low-dimensional nanostructure
    Zhang, Yiqing
    Wang, Lifeng
    Liu, Rumeng
    Jiang, Jingnong
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (22): : 2371 - 2383