Every convex free basic semi-algebraic set has an LMI representation

被引:62
作者
Helton, J. William [1 ]
McCullough, Scott [2 ]
机构
[1] Univ Calif San Diego, San Diego, CA 92103 USA
[2] Univ Florida, Gainesville, FL USA
基金
美国国家科学基金会;
关键词
C>-ALGEBRAS; SUBALGEBRAS;
D O I
10.4007/annals.2012.176.2.6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The (matricial) solution set of a Linear Matrix Inequality (LMI) is a convex free basic open semi-algebraic set. The main theorem of this paper is a converse, each such set arises from some LMI. The result has implications for semi-definite programming and systems engineering as well as for free semi-algebraic geometry.
引用
收藏
页码:979 / 1013
页数:35
相关论文
共 13 条
[1]  
[Anonymous], 2004, LONDON MATH SOC MONO
[2]  
ARVESON W, 1972, ACTA MATH-UPPSALA, V128, P271, DOI 10.1007/BF02392166
[3]   ON SUBALGEBRAS OF C]-ALGEBRAS [J].
ARVESON, WB .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 75 (04) :790-&
[4]  
Arveson W, 2008, J AM MATH SOC, V21, P1065
[5]  
Coste M., 1998, ERGEB MATH GRENZGEB, V36
[6]   Irreducible noncommutative defining polynomials for convex sets have degree four or less [J].
Dym, Harry ;
Helton, William ;
McCullough, Scott .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (03) :1189-1231
[7]   Matrix convexity: Operator analogues of the bipolar and Hahn-Banach theorems [J].
Effros, EG ;
Winkler, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 144 (01) :117-152
[8]   Linear matrix inequality representation of sets [J].
Helton, J. William ;
Vinnikov, Victor .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (05) :654-674
[9]  
Nemirovski A., 2007, INT C MATH MADR 2006, VI, P413
[10]  
Paulsen Vern, 2002, Cambridge Studies in Advanced Mathematics, V78