ON BAER MODULES

被引:7
作者
Jayaram, Chillumuntala [1 ]
Tekir, Unsal [2 ]
Koc, Suat [3 ]
机构
[1] Univ West Indies, Dept CMP, POB 64, Bridgetown, Barbados
[2] Marmara Univ, Dept Math, Istanbul, Turkey
[3] Istanbul Medeniyet Univ, Dept Math, Istanbul, Turkey
来源
REVISTA DE LA UNION MATEMATICA ARGENTINA | 2022年 / 63卷 / 01期
关键词
Baer rings; regular rings; von Neumann regular modules; Baer modules; a-submodules; m-submodules; Baer submodules;
D O I
10.33044/revuma.1741
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A commutative ring R is said to be a Baer ring if for each a is an element of R, ann(a) is generated by an idempotent element b E R. In this paper, we extend the notion of a Baer ring to modules in terms of weak idempotent elements defined in a previous work by Jayaram and Tekir. Let R be a commutative ring with a nonzero identity and let M be a unital R-module. M is said to be a Baer module if for each m is an element of M there exists a weak idempotent element e is an element of R such that ann(R)(m)M = eM. Various examples and properties of Baer modules are given. Also, we characterize a certain class of modules/submodules such as von Neumann regular modules/prime submodules in terms of Baer modules.
引用
收藏
页码:109 / 128
页数:20
相关论文
共 21 条
[1]   IDEALIZATION OF A MODULE [J].
Anderson, D. D. ;
Winders, Michael .
JOURNAL OF COMMUTATIVE ALGEBRA, 2009, 1 (01) :3-56
[2]   On S-multiplication modules [J].
Anderson, Dan D. ;
Arabaci, Tarik ;
Tekir, Unsal ;
Koc, Suat .
COMMUNICATIONS IN ALGEBRA, 2020, 48 (08) :3398-3407
[3]  
Anderson F. W., 1974, Graduate Text in Math., DOI 10.1007/978-1-4684-9913-1
[4]  
[Anonymous], 1969, Addison-Wesley Series in Mathematics
[5]   MULTIPLICATION MODULES [J].
BARNARD, A .
JOURNAL OF ALGEBRA, 1981, 71 (01) :174-178
[6]   Principally quasi-Baer rings [J].
Birkenmeier, GF ;
Kim, JY ;
Park, JK .
COMMUNICATIONS IN ALGEBRA, 2001, 29 (02) :639-660
[7]   MULTIPLICATION MODULES [J].
ELBAST, ZA ;
SMITH, PF .
COMMUNICATIONS IN ALGEBRA, 1988, 16 (04) :755-779
[8]   COMMUTATIVE PP RINGS [J].
EVANS, MW .
PACIFIC JOURNAL OF MATHEMATICS, 1972, 41 (03) :687-&
[9]   Polynomial extensions of quasi-Baer rings [J].
Hashemi, E ;
Moussavi, A .
ACTA MATHEMATICA HUNGARICA, 2005, 107 (03) :207-224
[10]  
Huckaba JamesA., 1988, COMMUTATIVE RINGS ZE, V117