Topological Anderson insulators in two-dimensional non-Hermitian disordered systems

被引:68
作者
Tang, Ling-Zhi [1 ,2 ]
Zhang, Ling-Feng [1 ,2 ]
Zhang, Guo-Qing [1 ,2 ]
Zhang, Dan-Wei [1 ,2 ]
机构
[1] South China Normal Univ, GPETR Ctr Quantum Precis Measurement, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, SPTE, Guangzhou 510006, Peoples R China
关键词
QUANTUM MATTER; TRANSITIONS;
D O I
10.1103/PhysRevA.101.063612
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The interplay among topology, disorder, and non-Hermiticity can induce some exotic topological and localization phenomena. Here we investigate this interplay in a two-dimensional non-Hermitian disordered Chern-insulator model with two typical kinds of non-Hermiticities, the nonreciprocal hopping and on-site gain-and-loss effects. The topological phase diagrams are obtained by numerically calculating two topological invariants in the real space, which are the disorder-averaged open-bulk Chern number and the generalized Bott index, respectively. We reveal that the nonreciprocal hopping (the gain-and-loss effect) can enlarge (reduce) the topological regions and the topological Anderson insulators induced by disorders can exist under both kinds of non-Hermiticities. Furthermore, we study the localization properties of the system in the topologically nontrivial and trivial regions by using the inverse participation ratio and the expansion of single-particle density distribution.
引用
收藏
页数:8
相关论文
共 103 条
[21]  
Goldman N, 2016, NAT PHYS, V12, P639, DOI [10.1038/nphys3803, 10.1038/NPHYS3803]
[22]   Topological Phases of Non-Hermitian Systems [J].
Gong, Zongping ;
Ashida, Yuto ;
Kawabata, Kohei ;
Takasan, Kazuaki ;
Higashikawa, Sho ;
Ueda, Masahito .
PHYSICAL REVIEW X, 2018, 8 (03)
[23]   Theory of the Topological Anderson Insulator [J].
Groth, C. W. ;
Wimmer, M. ;
Akhmerov, A. R. ;
Tworzydlo, J. ;
Beenakker, C. W. J. .
PHYSICAL REVIEW LETTERS, 2009, 103 (19)
[24]   Topological Anderson Insulator in Three Dimensions [J].
Guo, H. -M. ;
Rosenberg, G. ;
Refael, G. ;
Franz, M. .
PHYSICAL REVIEW LETTERS, 2010, 105 (21)
[26]   Non-Hermitian Many-Body Localization [J].
Hamazaki, Ryusuke ;
Kawabata, Kohei ;
Ueda, Masahito .
PHYSICAL REVIEW LETTERS, 2019, 123 (09)
[27]   Topological insulator laser: Theory [J].
Harari, Gal ;
Bandres, Miguel A. ;
Lumer, Yaakov ;
Rechtsman, Mikael C. ;
Chong, Y. D. ;
Khajavikhan, Mercedeh ;
Christodoulides, Demetrios N. ;
Segev, Mordechai .
SCIENCE, 2018, 359 (6381)
[28]   Colloquium: Topological insulators [J].
Hasan, M. Z. ;
Kane, C. L. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (04) :3045-3067
[29]   Localization transitions in non-Hermitian quantum mechanics [J].
Hatano, N ;
Nelson, DR .
PHYSICAL REVIEW LETTERS, 1996, 77 (03) :570-573
[30]   Vortex pinning and non-Hermitian quantum mechanics [J].
Hatano, N ;
Nelson, DR .
PHYSICAL REVIEW B, 1997, 56 (14) :8651-8673