Explaining Chest X-Ray Pathologies in Natural Language

被引:11
作者
Kayser, Maxime [1 ]
Emde, Cornelius [1 ]
Camburu, Oana-Maria [2 ]
Parsons, Guy [1 ,3 ]
Papiez, Bartlomiej [1 ]
Lukasiewicz, Thomas [1 ,4 ]
机构
[1] Univ Oxford, Oxford, England
[2] UCL, London, England
[3] Thames Valley Deanery, Oxford, England
[4] TU Wien, Vienna, Austria
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT V | 2022年 / 13435卷
基金
英国工程与自然科学研究理事会;
关键词
Chest X-rays; Natural language explanations; XAI; HEALTH;
D O I
10.1007/978-3-031-16443-9_67
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Most deep learning algorithms lack explanations for their predictions, which limits their deployment in clinical practice. Approaches to improve explainability, especially in medical imaging, have often been shown to convey limited information, be overly reassuring, or lack robustness. In this work, we introduce the task of generating natural language explanations (NLEs) to justify predictions made on medical images. NLEs are human-friendly and comprehensive, and enable the training of intrinsically explainable models. To this goal, we introduce MIMIC-NLE, the first, large-scale, medical imaging dataset with NLEs. It contains over 38,000 NLEs, which explain the presence of various thoracic pathologies and chest X-ray findings. We propose a general approach to solve the task and evaluate several architectures on this dataset, including via clinician assessment.
引用
收藏
页码:701 / 713
页数:13
相关论文
共 50 条
  • [1] Improving the Fairness of Chest X-ray Classifiers
    Zhang, Haoran
    Dullerud, Natalie
    Roth, Karsten
    Oakden-Rayner, Lauren
    Pfohl, Stephen
    Ghassemi, Marzyeh
    CONFERENCE ON HEALTH, INFERENCE, AND LEARNING, VOL 174, 2022, 174 : 204 - 233
  • [2] RIXA - Explaining Artificial Intelligence in Natural Language
    Becker, Maximilian
    Vishwesh, Vishwesh
    Birnstill, Pascal
    Schwall, Finn
    Wu, Sihan
    Beyerer, Juergen
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 875 - 884
  • [3] Automatic Calculation of Cardiometric Coefficients on Chest X-Ray Images
    Kornaev, Alexey
    Lvov, Dmitry
    Pershin, Ilya
    Kiselev, Semen
    Afonchikov, Danil
    Bariev, Iskander
    Ibragimov, Bulat
    IEEE ACCESS, 2025, 13 : 10702 - 10712
  • [4] Breaking Down Covariate Shift on Pneumothorax Chest X-Ray Classification
    Bercean, Bogdan
    Buburuzan, Alexandru
    Birhala, Andreea
    Avramescu, Cristian
    Tenescu, Andrei
    Marcu, Marius
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, UNSURE 2023, 2023, 14291 : 157 - 166
  • [5] Deep learning for understanding multilabel imbalanced Chest X-ray datasets
    Liz, Helena
    Huertas-Tato, Javier
    Sanchez-Montanes, Manuel
    Del Ser, Javier
    Camacho, David
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 144 : 291 - 306
  • [6] Deep Learning Based Automated Chest X-ray Abnormalities Detection
    Parikh, Vraj
    Shah, Jainil
    Bhatt, Chintan
    Corchado, Juan M.
    Dac-Nhuong Le
    AMBIENT INTELLIGENCE-SOFTWARE AND APPLICATIONS-13TH INTERNATIONAL SYMPOSIUM ON AMBIENT INTELLIGENCE, 2023, 603 : 1 - 12
  • [7] Metal-induced asthma and chest X-ray changes in welders
    Wittczak, Tomasz
    Dudek, Wojciech
    Walusiak-Skorupa, Jolanta
    Swierczynska-Machura, Dominika
    Cader, Wojciech
    Kowalczyk, Monika
    Palczynski, Cezary
    INTERNATIONAL JOURNAL OF OCCUPATIONAL MEDICINE AND ENVIRONMENTAL HEALTH, 2012, 25 (03) : 242 - 250
  • [8] Algorithmic encoding of protected characteristics in chest X-ray disease detection models
    Glocker, Ben
    Jones, Charles
    Winzeck, Stefan
    EBIOMEDICINE, 2023, 89
  • [9] Weakly-Supervised Segmentation for Disease Localization in Chest X-Ray Images
    Viniavskyi, Ostap
    Dobko, Mariia
    Dobosevych, Oles
    ARTIFICIAL INTELLIGENCE IN MEDICINE (AIME 2020), 2020, : 249 - 259
  • [10] Detection of Lung Lesions in Chest X-ray Images based on Artificial Intelligence
    Wei, Chuan-Yi
    Ou, Chih-Ying
    Chen, I-Yen
    Chang, Hsuan-Ting
    2022 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN, IEEE ICCE-TW 2022, 2022, : 173 - 174