Kruppel-Like Factor 1 (KLF1), KLF2, and Myc Control a Regulatory Network Essential for Embryonic Erythropoiesis

被引:27
作者
Pang, Christopher J. [1 ]
Lemsaddek, Wafaa [6 ]
Alhashem, Yousef N. [1 ]
Bondzi, Cornelius [1 ,8 ]
Redmond, Latasha C. [1 ]
Ah-Son, Nicolas [6 ]
Dumur, Catherine I. [2 ]
Archer, Kellie J. [3 ]
Haar, Jack L. [4 ]
Lloyd, Joyce A. [1 ,5 ]
Trudel, Marie [6 ,7 ]
机构
[1] Virginia Commonwealth Univ, Dept Human & Mol Genet, Richmond, VA 23284 USA
[2] Virginia Commonwealth Univ, Dept Pathol, Richmond, VA USA
[3] Virginia Commonwealth Univ, Dept Biostat, Richmond, VA USA
[4] Virginia Commonwealth Univ, Dept Neurobiol & Anat, Richmond, VA USA
[5] Virginia Commonwealth Univ, Massey Canc Ctr, Richmond, VA USA
[6] Univ Montreal, Inst Rech Clin Montreal, Montreal, PQ, Canada
[7] Univ Montreal, Fac Med, Montreal, PQ H3C 3J7, Canada
[8] Hampton Univ, Hampton, VA 23668 USA
关键词
HUMAN GAMMA-GLOBIN; POLYCYSTIC KIDNEY-DISEASE; TRANSCRIPTION FACTOR EKLF; SAC ERYTHROID-CELLS; C-MYC; YOLK-SAC; PRIMITIVE ERYTHROPOIESIS; GENE-EXPRESSION; CELLULAR PROLIFERATION; BETA-THALASSEMIA;
D O I
10.1128/MCB.00104-12
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Kruppel-like factor 1 (KLF1) and KLF2 positively regulate embryonic beta-globin expression and have additional overlapping roles in embryonic (primitive) erythropoiesis. KLF1(-/-) KLF2(-/-) double knockout mice are anemic at embryonic day 10.5 (E10.5) and die by E11.5, in contrast to single knockouts. To investigate the combined roles of KLF1 and KLF2 in primitive erythropoiesis, expression profiling of E9.5 erythroid cells was performed. A limited number of genes had a significantly decreasing trend of expression in wild-type, KLF1(-/-), and KLF1(-/-) KLF2(-/-) mice. Among these, the gene for Myc (c-Myc) emerged as a central node in the most significant gene network. The expression of the Myc gene is synergistically regulated by KLF1 and KLF2, and both factors bind the Myc promoters. To characterize the role of Myc in primitive erythropoiesis, ablation was performed specifically in mouse embryonic proerythroblast cells. After E9.5, these embryos exhibit an arrest in the normal expansion of circulating red cells and develop anemia, analogous to KLF1(-/-) KLF2(-/-) embryos. In the absence of Myc, circulating erythroid cells do not show the normal increase in alpha- and beta-like globin gene expression but, interestingly, have accelerated erythroid cell maturation between E9.5 and E11.5. This study reveals a novel regulatory network by which KLF1 and KLF2 regulate Myc to control the primitive erythropoietic program.
引用
收藏
页码:2628 / 2644
页数:17
相关论文
共 82 条
  • [1] Myc Inhibits p27-Induced Erythroid Differentiation of Leukemia Cells by Repressing Erythroid Master Genes without Reversing p27-Mediated Cell Cycle Arrest
    Acosta, Juan C.
    Ferrandiz, Nuria
    Bretones, Gabriel
    Torrano, Veronica
    Blanco, Rosa
    Richard, Carlos
    O'Connell, Brenda
    Sedivy, John
    Dolores Delgado, M.
    Leon, Javier
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2008, 28 (24) : 7286 - 7295
  • [2] Transcription Factors KLF1 and KLF2 Positively Regulate Embryonic and Fetal β-Globin Genes through Direct Promoter Binding
    Alhashem, Yousef N.
    Vinjamur, Divya S.
    Basu, Mohua
    Klingmueller, Ursula
    Gaensler, Karin M. L.
    Lloyd, Joyce A.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (28) : 24819 - 24827
  • [3] A Dominant Mutation in the Gene Encoding the Erythroid Transcription Factor KLF1 Causes a Congenital Dyserythropoietic Anemia
    Arnaud, Lionel
    Saison, Carole
    Helias, Virginie
    Lucien, Nicole
    Steschenko, Dominique
    Giarratana, Marie-Catherine
    Prehu, Claude
    Foliguet, Bernard
    Montout, Lory
    de Brevern, Alexandre G.
    Francina, Alain
    Ripoche, Pierre
    Fenneteau, Odile
    Da Costa, Lydie
    Peyrard, Thierry
    Coghlan, Gail
    Illum, Niels
    Birgens, Henrik
    Tamary, Hannah
    Iolascon, Achille
    Delaunay, Jean
    Tchernia, Gil
    Cartron, Jean-Pierre
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2010, 87 (05) : 721 - 727
  • [4] Embryonic origins of mammalian hematopoiesis
    Baron, MH
    [J]. EXPERIMENTAL HEMATOLOGY, 2003, 31 (12) : 1160 - 1169
  • [5] KLF2 is essential for primitive erythropoiesis and regulates the human and murine embryonic β-like globin genes in vivo
    Basu, P
    Morris, PE
    Haar, JL
    Wani, MA
    Lingrel, JB
    Gaensler, KML
    Lloyd, JA
    [J]. BLOOD, 2005, 106 (07) : 2566 - 2571
  • [6] Evolutionary conservation of KLF transcription factors and functional conservation of human γ-globin gene regulation in chicken
    Basu, P
    Sargent, TG
    Redmond, LC
    Aisenberg, JC
    Kransdorf, EP
    Wang, SZ
    Ginder, GD
    Lloyd, JA
    [J]. GENOMICS, 2004, 84 (02) : 311 - 319
  • [7] EKLF and KLF2 have compensatory roles in embryonic β-globin gene expression and primitive erythropoiesis
    Basu, Priyadarshi
    Lung, Tina K.
    Lemsaddek, Wafaa
    Sargent, Thanh Giang
    Williams, David C., Jr.
    Basu, Mohua
    Redmond, Latasha C.
    Lingrel, Jerry B.
    Haar, Jack L.
    Lloyd, Joyce A.
    [J]. BLOOD, 2007, 110 (09) : 3417 - 3425
  • [8] Evidence for a Bigenic Chromatin Subdomain in Regulation of the Fetal-to-Adult Hemoglobin Switch
    Beauchemin, Hugues
    Trudel, Marie
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2009, 29 (06) : 1635 - 1648
  • [9] Kruppel-like factors: Three fingers in many pies
    Bieker, JJ
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (37) : 34355 - 34358
  • [10] Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin
    Borg, Joseph
    Papadopoulos, Petros
    Georgitsi, Marianthi
    Gutierrez, Laura
    Grech, Godfrey
    Fanis, Pavlos
    Phylactides, Marios
    Verkerk, Annemieke J. M. H.
    van der Spek, Peter J.
    Scerri, Christian A.
    Cassar, Wilhelmina
    Galdies, Ruth
    van IJcken, Wilfred
    Ozgur, Zeliha
    Gillemans, Nynke
    Hou, Jun
    Bugeja, Marisa
    Grosveld, Frank G.
    von Lindern, Marieke
    Felice, Alex E.
    Patrinos, George P.
    Philipsen, Sjaak
    [J]. NATURE GENETICS, 2010, 42 (09) : 801 - U100