Geometry of Log-Concave Density Estimation

被引:4
|
作者
Robeva, Elina [1 ]
Sturmfels, Bernd [2 ,3 ]
Uhler, Caroline [4 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] MPI MiS, Leipzig, Germany
[3] Univ Calif Berkeley, Berkeley, CA USA
[4] MIT, IDSS & EECS Dept, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
Log-concave density estimation; Non-parametric density estimation; Polyhedral subdivision; Secondary polytope; 52B99; 62G07; 62H12;
D O I
10.1007/s00454-018-0024-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Shape-constrained density estimation is an important topic in mathematical statistics. We focus on densities on Rd that are log-concave, and we study geometric properties of the maximum likelihood estimator (MLE) for weighted samples. Cule, Samworth, and Stewart showed that the logarithm of the optimal log-concave density is piecewise linear and supported on a regular subdivision of the samples. This defines a map from the space of weights to the set of regular subdivisions of the samples, i.e. the face poset of their secondary polytope. We prove that this map is surjective. In fact, every regular subdivision arises in the MLE for some set of weights with positive probability, but coarser subdivisions appear to be more likely to arise than finer ones. To quantify these results, we introduce a continuous version of the secondary polytope, whose dual we name the Samworth body. This article establishes a new link between geometric combinatorics and nonparametric statistics, and it suggests numerous open problems.
引用
收藏
页码:136 / 160
页数:25
相关论文
共 50 条
  • [21] A note on deconvolution density estimation
    Patil, P
    STATISTICS & PROBABILITY LETTERS, 1996, 29 (01) : 79 - 84
  • [22] TRANSFORMATIONS IN DENSITY-ESTIMATION
    WAND, MP
    MARRON, JS
    RUPPERT, D
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (414) : 343 - 353
  • [23] Kernel density estimation on Riemannian manifolds
    Pelletier, B
    STATISTICS & PROBABILITY LETTERS, 2005, 73 (03) : 297 - 304
  • [24] Using pseudometrics in kernel density estimation
    Hovda, Sigve
    JOURNAL OF NONPARAMETRIC STATISTICS, 2014, 26 (04) : 669 - 696
  • [25] Multivariate density estimation: A comparative study
    Cwik, J
    Koronacki, J
    NEURAL COMPUTING & APPLICATIONS, 1997, 6 (03) : 173 - 185
  • [26] On bandwidth selection in kernel density estimation
    Ushakov, N. G.
    Ushakov, V. G.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (02) : 419 - 428
  • [27] Shape constrained kernel density estimation
    Birke, Melanie
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (08) : 2851 - 2862
  • [28] Multivariate Density Estimation by Neural Networks
    Peerlings, Dewi E. W.
    van den Brakel, Jan A.
    Basturk, Nalan
    Puts, Marco J. H.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 2436 - 2447
  • [29] KERNEL DENSITY ESTIMATION VIA DIFFUSION
    Botev, Z. I.
    Grotowski, J. F.
    Kroese, D. P.
    ANNALS OF STATISTICS, 2010, 38 (05) : 2916 - 2957
  • [30] Clustering via nonparametric density estimation
    Adelchi Azzalini
    Nicola Torelli
    Statistics and Computing, 2007, 17 : 71 - 80