Cysteine-rich antimicrobial peptides in invertebrates

被引:0
|
作者
Dimarcq, JL [1 ]
Bulet, P [1 ]
Hetru, C [1 ]
Hoffmann, J [1 ]
机构
[1] CNRS, Inst Biol Mol & Cellulaire, F-67084 Strasbourg, France
关键词
antimicrobial peptides; insects; innate immunity; bacterial infections; fungal infections; invertebrates; arthropods;
D O I
10.1002/(SICI)1097-0282(1998)47:6<465::AID-BIP5>3.0.CO;2-#
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Antimicrobial peptides are pivotal elements of the innate immune defense against bacterial and fungal infections. Within the impressive list of antimicirobial peptides available at present, more than half have been characterized in arthropods. Cysteine-rich antimicrobial peptides represent the most diverse and widely distributed family among arthropods and, to a larger extent among invertebrates. Proeminent groups of cysteine-rich peptides are peptides with the CS alpha beta motif and peptides forming an hairpin-like P-sheet structure. Although these substances exhibit a large structural diversity and a wide spectrum of activity, they have in common the ability to permeabilize microbial cytoplasmic membranes. Drosophila has proved a remarkable systemfor the analysis of the regulation of expression of gene encoding antimirobial cysteine-rich peptides. These studies have unraveled the striking parallels that exist between insect immunity; and innate immunity in mammals that point to a common ancestry of essential aspects of innate immunity. (C) 1999 John Wiley & Sons, Inc.
引用
收藏
页码:465 / 477
页数:13
相关论文
共 50 条
  • [41] Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases
    Yeh, Yu-Hung
    Chang, Yu-Hsien
    Huang, Pin-Yao
    Huang, Jing-Bo
    Zimmerli, Laurent
    FRONTIERS IN PLANT SCIENCE, 2015, 6 : 1 - 12
  • [42] Cysteine-rich toxins from Lachesana tarabaevi spider venom with amphiphilic C-terminal segments
    Kuzmenkov, Alexey I.
    Fedorova, Irina M.
    Vassilevski, Alexander A.
    Grishin, Eugene V.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2013, 1828 (02): : 724 - 731
  • [43] Mechanisms and consequences of bacterial resistance to antimicrobial peptides
    Andersson, D. I.
    Hughes, D.
    Kubicek-Sutherland, J. Z.
    DRUG RESISTANCE UPDATES, 2016, 26 : 43 - 57
  • [44] Antimicrobial Peptides in the Brain
    Su, Yanhua
    Zhang, Kai
    Schluesener, Hermann J.
    ARCHIVUM IMMUNOLOGIAE ET THERAPIAE EXPERIMENTALIS, 2010, 58 (05) : 365 - 377
  • [45] Antimicrobial peptides in crustaceans
    Rosa, R. D.
    Barracco, M. A.
    ISJ-INVERTEBRATE SURVIVAL JOURNAL, 2010, 7 (02): : 262 - 284
  • [46] Antimicrobial Cationic Peptides
    Neubauerova, Tereza
    Mackova, Martina
    Macek, Tomas
    Koutek, Bohumir
    CHEMICKE LISTY, 2009, 103 (06): : 460 - 468
  • [47] Mammalian antimicrobial peptides
    Cipáková, I
    Hostinová, E
    BIOLOGIA, 2003, 58 (03) : 335 - 341
  • [48] Characterization of a novel cysteine-rich antifungal protein from Fusarium graminearum with activity against maize fungal pathogens
    Patino, Belen
    Vazquez, Covadonga
    Manning, James M.
    Roncero, Maria Isabel G.
    Cordoba-Canero, Dolores
    Di Pietro, Antonio
    Martinez-del-Pozo, Alvaro
    INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 2018, 283 : 45 - 51
  • [49] The secreted Helicobacter cysteine-rich protein A causes adherence of human monocytes and differentiation into a macrophage-like phenotype
    Dumrese, Claudia
    Slomianka, Lutz
    Ziegler, Urs
    Choi, Sung Sook
    Kalia, Awdhesh
    Fulurija, Alma
    Lu, Wei
    Berg, Douglas E.
    Benghezal, Mohammed
    Marshall, Barry
    Mittl, Peer R. E.
    FEBS LETTERS, 2009, 583 (10): : 1637 - 1643
  • [50] Psoriasis and Antimicrobial Peptides
    Takahashi, Toshiya
    Yamasaki, Kenshi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (18) : 1 - 17