Artificial intelligence-enabled electrocardiogram screens low left ventricular ejection fraction with a degree of confidence

被引:7
作者
Lee, Chun-Ho [1 ]
Liu, Wei-Ting [2 ]
Lou, Yu-Sheng [3 ]
Lin, Chin-Sheng [2 ]
Fang, Wen-Hui [4 ]
Lee, Chia-Cheng [5 ,6 ]
Ho, Ching-Liang [7 ]
Wang, Chih-Hung [8 ,9 ]
Lin, Chin [1 ,3 ,10 ]
机构
[1] Natl Def Med Ctr, Sch Publ Hlth, Taipei, Taiwan
[2] Triserv Gen Hosp, Natl Def Med Ctr, Dept Internal Med, Div Cardiol, Taipei, Taiwan
[3] Natl Def Med Ctr, Grad Inst Life Sci, Taipei, Taiwan
[4] Triserv Gen Hosp, Natl Def Med Ctr, Dept Family & Community Med, Dept Internal Med, Taipei, Taiwan
[5] Triserv Gen Hosp, Natl Def Med Ctr, Med Informat Off, Taipei, Taiwan
[6] Triserv Gen Hosp, Natl Def Med Ctr, Dept Surg, Div Colorectal Surg, Taipei, Taiwan
[7] Triserv Gen Hosp, Natl Def Med Ctr, Div Hematol & Oncol, Taipei, Taiwan
[8] Triserv Gen Hosp, Natl Def Med Ctr, Dept Otolaryngol Head & Neck Surg, Taipei, Taiwan
[9] Natl Def Med Ctr, Grad Inst Med Sci, Taipei, Taiwan
[10] Natl Def Med Ctr, Med Technol Educ Ctr, Sch Med, Taipei 114, Taiwan
来源
DIGITAL HEALTH | 2022年 / 8卷
关键词
Artificial intelligence; electrocardiogram; deep learning; ejection fraction; continuous numerical prediction; degree of confidence; HEART-FAILURE; SYSTOLIC DYSFUNCTION; CRITERIA; OUTCOMES;
D O I
10.1177/20552076221143249
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
BackgroundArtificial intelligence-enabled electrocardiogram has become a substitute tool for echocardiography in left ventricular ejection fraction estimation. However, the direct use of artificial intelligence-enabled electrocardiogram may be not trustable due to the uncertainty of the prediction. ObjectiveThe study aimed to establish an artificial intelligence-enabled electrocardiogram with a degree of confidence to identify left ventricular dysfunction. MethodsThe study collected 76,081 and 11,771 electrocardiograms from an academic medical center and a community hospital to establish and validate the deep learning model, respectively. The proposed deep learning model provided the point estimation of the actual ejection fraction and its standard deviation derived from the maximum probability density function of a normal distribution. The primary analysis focused on the accuracy of identifying patients with left ventricular dysfunction (ejection fraction <= 40%). Since the standard deviation was an uncertainty indicator in a normal distribution, we used it as a degree of confidence in the artificial intelligence-enabled electrocardiogram. We further explored the clinical application of estimated standard deviation and followed up on the new-onset left ventricular dysfunction in patients with initially normal ejection fraction. ResultsThe area under receiver operating characteristic curves (AUC) of detecting left ventricular dysfunction were 0.9549 and 0.9365 in internal and external validation sets. After excluding the cases with a lower degree of confidence, the artificial intelligence-enabled electrocardiogram performed better in the remaining cases in internal (AUC = 0.9759) and external (AUC = 0.9653) validation sets. For the application of future left ventricular dysfunction risk stratification in patients with initially normal ejection fraction, a 4.57-fold risk of future left ventricular dysfunction when the artificial intelligence-enabled electrocardiogram is positive in the internal validation set. The hazard ratio was increased to 8.67 after excluding the cases with a lower degree of confidence. This trend was also validated in the external validation set. ConclusionThe deep learning model with a degree of confidence can provide advanced improvements in identifying left ventricular dysfunction and serve as a decision support and management-guided screening tool for prognosis.
引用
收藏
页数:16
相关论文
共 36 条
[1]   Uncertainty quantification in skin cancer classification using three-way decision-based Bayesian deep learning [J].
Abdar, Moloud ;
Samami, Maryam ;
Mahmoodabad, Sajjad Dehghani ;
Doan, Thang ;
Mazoure, Bogdan ;
Hashemifesharaki, Reza ;
Liu, Li ;
Khosravi, Abbas ;
Acharya, U. Rajendra ;
Makarenkov, Vladimir ;
Nahavandi, Saeid .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 135
[2]   Deep Learning Predicts Heart Failure With Preserved, Mid-Range, and Reduced Left Ventricular Ejection Fraction From Patient Clinical Profiles [J].
Alkhodari, Mohanad ;
Jelinek, Herbert F. ;
Karlas, Angelos ;
Soulaidopoulos, Stergios ;
Arsenos, Petros ;
Doundoulakis, Ioannis ;
Gatzoulis, Konstantinos A. ;
Tsioufis, Konstantinos ;
Hadjileontiadis, Leontios J. ;
Khandoker, Ahsan H. .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
[3]   Application of artificial intelligence to the electrocardiogram [J].
Attia, Zachi, I ;
Harmon, David M. ;
Behr, Elijah R. ;
Friedman, Paul A. .
EUROPEAN HEART JOURNAL, 2021, 42 (46) :4717-+
[4]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[5]   The Role of N-terminal PRO-Brain Natriuretic Peptide and Echocardiography for Screening Asymptomatic Left Ventricular Dysfunction in a Population at High Risk for Heart Failure. The PROBE-HF Study [J].
Betti, Irene ;
Castelli, Gabriele ;
Brachielli, Alessandro ;
Beligni, Cinzia ;
Boscherini, Vittorio ;
De Luca, Leonardo ;
Messeri, Gianni ;
Gheorghiade, Mihai ;
Maisel, Alan ;
Zuppiroli, Alfredo .
JOURNAL OF CARDIAC FAILURE, 2009, 15 (05) :377-384
[6]   Electrocardiogram-Based Heart Age Estimation by a Deep Learning Model Provides More Information on the Incidence of Cardiovascular Disorders [J].
Chang, Chiao-Hsiang ;
Lin, Chin-Sheng ;
Luo, Yu-Sheng ;
Lee, Yung-Tsai ;
Lin, Chin .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
[7]   Artificial Intelligence-Enabled Electrocardiography Predicts Left Ventricular Dysfunction and Future Cardiovascular Outcomes: A Retrospective Analysis [J].
Chen, Hung-Yi ;
Lin, Chin-Sheng ;
Fang, Wen-Hui ;
Lou, Yu-Sheng ;
Cheng, Cheng-Chung ;
Lee, Chia-Cheng ;
Lin, Chin .
JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (03)
[8]   Artificial Intelligence Algorithm for Screening Heart Failure with Reduced Ejection Fraction Using Electrocardiography [J].
Cho, Jinwoo ;
Lee, ByeongTak ;
Kwon, Joon-Myoung ;
Lee, Yeha ;
Park, Hyunho ;
Oh, Byung-Hee ;
Jeon, Ki-Hyun ;
Park, Jinsik ;
Kim, Kyung-Hee .
ASAIO JOURNAL, 2021, 67 (03) :314-321
[9]   Screening for Cardiovascular Disease Risk With Electrocardiography US Preventive Services Task Force Recommendation Statement [J].
Curry, Susan J. ;
Krist, Alex H. ;
Owens, Douglas K. ;
Barry, Michael J. ;
Caughey, Aaron B. ;
Davidson, KarinaW. ;
Doubeni, Chyke A. ;
Epling, John W., Jr. ;
Kemper, Alex R. ;
Kubik, Martha ;
Landefeld, C. Seth ;
Mangione, Carol M. ;
Silverstein, Michael ;
Simon, Melissa A. ;
Tseng, Chien-Wen ;
Wong, John B. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2018, 319 (22) :2308-2314
[10]   Appropriateness criteria for cardiovascular imaging use in heart failure: report of literature review [J].
Garbi, Madalina ;
McDonagh, Theresa ;
Cosyns, Bernard ;
Bucciarelli-Ducci, Chiara ;
Edvardsen, Thor ;
Kitsiou, Anastasia ;
Nieman, Koen ;
Lancellotti, Patrizio .
EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2015, 16 (02) :147-153