Monitoring crop cycles by SAR using a neural network trained by a model

被引:0
|
作者
Del Frate, F [1 ]
Ferrazzoli, P [1 ]
Guerriero, L [1 ]
Strozzi, T [1 ]
Wegmüller, U [1 ]
Cookmartin, G [1 ]
Quegan, S [1 ]
机构
[1] Univ Tor Vergata Ingn, DISP, I-00133 Rome, Italy
关键词
D O I
暂无
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
An algorithm, based on an electromagnetic model and a neural network, aimed at monitoring the multitemporal evolution of wheat fields, is described. Three different sites are used to validate the model, provide reference ground data, and test the algorithm.
引用
收藏
页码:239 / 244
页数:6
相关论文
共 50 条
  • [1] Wheat cycle monitoring using radar data and a neural network trained by a model
    Del Frate, F
    Ferrazzoli, P
    Guerriero, L
    Strozzi, T
    Wegmüller, U
    Cookmartin, G
    Quegan, S
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (01): : 35 - 44
  • [2] Wheat cycle monitoring using radar data and a neural network trained by a model
    Del Frate, F
    Ferrazzoli, P
    Guerriero, L
    Strozzi, T
    Wegmüller, U
    Cookmartin, G
    Quegan, S
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 481 - 483
  • [3] A Filter for SAR Image Despeckling Using Pre-Trained Convolutional Neural Network Model
    Pan, Ting
    Peng, Dong
    Yang, Wen
    Li, Heng-Chao
    REMOTE SENSING, 2019, 11 (20)
  • [4] SAR Despeckling Using Multiobjective Neural Network Trained With Generic Statistical Samples
    Vitale, Sergio
    Ferraioli, Giampaolo
    Frery, Alejandro C.
    Pascazio, Vito
    Yue, Dong-Xiao
    Xu, Feng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [5] SAR Image Despeckling Using Pre-trained Convolutional Neural Network Models
    Yang, Xiangli
    Denis, Loic
    Tupin, Florence
    Yang, Wen
    2019 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2019,
  • [6] Retrieving forest stand parameters from SAR backscatter data using a neural network trained by a canopy backscatter model
    Wang, Y
    Dong, D
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1997, 18 (04) : 981 - 989
  • [7] Onion Crop Monitoring with Multispectral Imagery using Deep Neural Network
    Din, Naseer U.
    Naz, Bushra
    Zai, Samer
    Bakhtawer
    Ahmed, Waqar
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (05) : 303 - 309
  • [8] Optical Performance Monitoring Using Artificial Neural Network Trained With Asynchronous Amplitude Histograms
    Shen, Thomas Shun Rong
    Meng, Ke
    Lau, Alan Pak Tao
    Dong, Zhao Yang
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2010, 22 (22) : 1665 - 1667
  • [9] CROP HARVEST MONITORING USING POLARIMETRIC SAR PARAMETERS
    Hosseini, Mehdi
    Becker-Reshef, Inbal
    Justice, Chris
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4175 - 4178
  • [10] Research on Supervised Classification of Fully Polarimetric SAR Image Using BP Neural Network Trained by PSO
    Yu, Jie
    Li, Yan
    Zhang, Zhong Shan
    Jiang, Jing Chao
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 6152 - 6157