Quadratic forms for the 1-D semilinear Schrodinger equation

被引:119
作者
Kenig, CE
Ponce, G
Vega, L
机构
[1] UNIV CALIF SANTA BARBARA, DEPT MATH, SANTA BARBARA, CA 93106 USA
[2] UNIV BASQUE COUNTRY, DEPT MATEMAT, E-48080 BILBAO, SPAIN
关键词
Schrodinger equation; bilinear estimates; well-posedness;
D O I
10.1090/S0002-9947-96-01645-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with 1-D quadratic semilinear Schrodinger equations. We study local well posedness in classical Sobolev space H-s of the associated initial value problem and periodic boundary value problem. Our main interest is to obtain the lowest value of s which guarantees the desired local well posedness result. We prove that at least for the quadratic cases these values are negative and depend on the structure of the nonlinearity considered.
引用
收藏
页码:3323 / 3353
页数:31
相关论文
共 22 条
[1]  
BIRNIR B, IN PRESS J LONDON MA
[2]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P107
[3]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[4]  
CAZENAVE T, TEXTOS METODOS MATEM, V22
[5]  
DIX D, IN PRESS SIAM J MATH
[6]   INEQUALITIES FOR STRONGLY SINGULAR CONVOLUTION OPERATORS [J].
FEFFERMAN, C .
ACTA MATHEMATICA UPPSALA, 1970, 124 (1-2) :9-+
[7]   SPHERICAL SUMMATION MULTIPLIERS [J].
FEFFERMAN, C .
ISRAEL JOURNAL OF MATHEMATICS, 1973, 15 (01) :44-52
[8]  
GINIBRE J, 1985, J MATH PURE APPL, V64, P363
[9]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .1. CAUCHY-PROBLEM, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :1-32
[10]  
KATO T, 1989, LECT NOTES PHYS, V345, P218