A certain generalized Pochhammer symbol and its applications to hypergeometric functions

被引:53
作者
Srivastava, H. M. [1 ]
Cetinkaya, Aysegul [2 ]
Kiymaz, I. Onur [2 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] Ahi Evran Univ, Dept Math, TR-40100 Kirsehir, Turkey
关键词
Gamma and the extended gamma functions; Pochhammer's symbol and its generalizations; Gauss hypergeometric function; Confluent hypergeometric function; Generalized hypergeometric function; Generating functions; Generalized hypergeometric polynomials; Bessel; modified Bessel and Macdonald functions; GAMMA-FUNCTIONS; BETA;
D O I
10.1016/j.amc.2013.10.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we first introduce an interesting new generalization of the familiar Pochhammer symbol by means of a certain one-parameter family of generalized gamma functions. With the help of this new generalized Pochhammer symbol, we then introduce an extension of the generalized hypergeometric function F-r(s) with r numerator and s denominator parameters. Finally, we present a systematic study of the various fundamental properties of the class of the generalized hypergeometric functions introduced here. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:484 / 491
页数:8
相关论文
共 30 条
[1]  
Andrews G.E., 1999, Encycl. Math. Appl., V71
[2]  
[Anonymous], 1966, FORMULAS THEOREMS SP, DOI DOI 10.1007/978-3-662-11761-3
[3]  
[Anonymous], 2010, Handbook of Mathematical Functions
[4]  
[Anonymous], 1954, TABLES INTEGRAL TRAN
[5]  
[Anonymous], 1964, NBS APPL MATH SERIES
[6]  
Bozer M, 2013, J COMPUT ANAL APPL, V15, P1194
[7]   The incomplete second Appell hypergeometric functions [J].
Cetinkaya, Aysegul .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) :8332-8337
[8]   GENERALIZED INCOMPLETE GAMMA-FUNCTIONS WITH APPLICATIONS [J].
CHAUDHRY, MA ;
ZUBAIR, SM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 55 (01) :99-124
[9]   Extended hypergeometric and confluent hypergeornetric functions [J].
Chaudhry, MA ;
Qadir, A ;
Srivastava, HM ;
Paris, RB .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 159 (02) :589-602
[10]  
Erdelyi A., 1953, Higher transcendental functions, V2