We show the existence of smooth isolated curves of different degrees and genera in Calabi-Yau threefolds that are complete intersections in homogeneous spaces. Along the way, we classify all degrees and genera of smooth curves on BN general K3 surfaces of genus mu, where 5 <= mu <= 10. By results of Mukai, these are the K3 surfaces that can be realised as complete intersections in certain homogeneous spaces.
机构:
Harvard Univ, Dept Math, Cambridge, MA 02138 USA
Natl Taiwan Univ, Taida Inst Math Sci, Taipei 10764, TaiwanHarvard Univ, Dept Math, Cambridge, MA 02138 USA
Gao, Peng
He, Yang-Hui
论文数: 0引用数: 0
h-index: 0
机构:
City Univ London, Dept Math, London EC1V 0HB, England
Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China
Univ Oxford Merton Coll, Oxford OX1 4JD, EnglandHarvard Univ, Dept Math, Cambridge, MA 02138 USA
He, Yang-Hui
Yau, Shing-Tung
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Dept Math, Cambridge, MA 02138 USA
Natl Taiwan Univ, Taida Inst Math Sci, Taipei 10764, TaiwanHarvard Univ, Dept Math, Cambridge, MA 02138 USA