Phase-field-crystal models and mechanical equilibrium

被引:44
|
作者
Heinonen, V. [1 ]
Achim, C. V. [2 ]
Elder, K. R. [3 ]
Buyukdagli, S. [1 ]
Ala-Nissila, T. [1 ,4 ]
机构
[1] Aalto Univ, Sch Sci, COMP Ctr Excellence, Dept Appl Phys, FI-00076 Aalto, Finland
[2] Univ Dusseldorf, Inst Theoret Phys Weiche Mat 2, Dusseldorf, Germany
[3] Oakland Univ, Dept Phys, Rochester, MI 48309 USA
[4] Brown Univ, Dept Phys, Providence, RI 02912 USA
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 03期
基金
芬兰科学院;
关键词
DENSITY-FUNCTIONAL THEORY; SIMULATIONS;
D O I
10.1103/PhysRevE.89.032411
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Phase-field-crystal (PFC) models constitute a field theoretical approach to solidification, melting, and related phenomena at atomic length and diffusive time scales. One of the advantages of these models is that they naturally contain elastic excitations associated with strain in crystalline bodies. However, instabilities that are diffusively driven towards equilibrium are often orders of magnitude slower than the dynamics of the elastic excitations, and are thus not included in the standard PFC model dynamics. We derive a method to isolate the time evolution of the elastic excitations from the diffusive dynamics in the PFC approach and set up a two-stage process, in which elastic excitations are equilibrated separately. This ensures mechanical equilibrium at all times. We show concrete examples demonstrating the necessity of the separation of the elastic and diffusive time scales. In the small-deformation limit this approach is shown to agree with the theory of linear elasticity.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Stability of liquid crystalline phases in the phase-field-crystal model
    Achim, Cristian V.
    Wittkowski, Raphael
    Loewen, Hartmut
    PHYSICAL REVIEW E, 2011, 83 (06):
  • [22] Controlling grain boundary mobility in phase-field-crystal model
    Xiao, Zhanxin
    Su, Xin
    Mordehai, Dan
    Wang, Nan
    COMPUTATIONAL MATERIALS SCIENCE, 2025, 253
  • [23] Elastic strain response in the modified phase-field-crystal model
    Zhou, Wenquan
    Wang, Jincheng
    Wang, Zhijun
    Huang, Yunhao
    Guo, Can
    Li, Junjie
    Guo, Yaolin
    CHINESE PHYSICS B, 2017, 26 (09)
  • [24] Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview
    Emmerich, Heike
    Loewen, Hartmut
    Wittkowski, Raphael
    Gruhn, Thomas
    Toth, Gyula I.
    Tegze, Gyorgy
    Granasy, Laszlo
    ADVANCES IN PHYSICS, 2012, 61 (06) : 665 - 743
  • [25] Phase-field-crystal model of phase and microstructural stability in driven nanocrystalline systems
    Ofori-Opoku, Nana
    Hoyt, Jeffrey J.
    Provatas, Nikolas
    PHYSICAL REVIEW E, 2012, 86 (06):
  • [26] Modified phase-field-crystal model for solid-liquid phase transitions
    Guo, Can
    Wang, Jincheng
    Wang, Zhijun
    Li, Junjie
    Guo, Yaolin
    Tang, Sai
    PHYSICAL REVIEW E, 2015, 92 (01):
  • [27] Effect of noise on ordering of hexagonal grains in a phase-field-crystal model
    Ohnogi, H.
    Shiwa, Y.
    PHYSICAL REVIEW E, 2011, 84 (05):
  • [28] Atomistic Modeling of Solidification Phenomena Using the Phase-Field-Crystal Model
    Humadi, Harith
    Ofori-Opoku, Nana
    Provatas, Nikolas
    Hoyt, Jeffrey J.
    JOM, 2013, 65 (09) : 1103 - 1110
  • [29] Particles on curved surfaces: A dynamic approach by a phase-field-crystal model
    Backofen, Rainer
    Voigt, Axel
    Witkowski, Thomas
    PHYSICAL REVIEW E, 2010, 81 (02):
  • [30] Microscopic patterns in the 2D phase-field-crystal model
    Martine-La Boissoniere, Gabriel
    Choksi, Rustum
    Lessard, Jean-Philippe
    NONLINEARITY, 2022, 35 (03) : 1500 - 1520